
COMP 421: Files & Databases

Lecture 0: Logistics, policies, scheduling, Project 0…

and maybe some actual material

WaitList

• I cannot make waitlist guarantees at this time

• To improve your chances of getting into the class (though not
a guarantee), stay in the class and complete P0.

• Waitlist decisions will be made according to some fair metric,
so please do not email us specific requests. We will not
return these emails.

2

Course Overview

• This course is about the design/implementation of database
management systems (DBMSs).

• This is not a course about how to use a DBMS to build
applications or how to administer a DBMS.

– See SILS, STOR, and more

– You all have seen my memo at this point.

3

Course Pages

• Course Schedule, Syllabus, Policies, Projects: Course Web Page

4

bsb20.github.io

Course Pages

• Project submission and autograding: Gradescope

5

https://www.gradescope.com/courses/1078768

Course Pages

• Mostly just links and grade/roster management: Canvas

6

https://uncch.instructure.com/courses/91095

Grading

• Projects (70%)
– Project 0 (10%)

– Project 1 (20%)

– Project 2 (20%)

– Project 3 (20%)

• Midterm Exam (10%)

• Final Exam (15%)

• Participation (5%)

7

Projects

• All projects will use the CMU DB Group
BusTub academic DBMS.
– Written in C++

– Each project builds on the previous one.

• We will have at least two bootcamps for
getting up to speed on C++

• More of these group sessions are
possible if these first two are helpful

8

https://github.com/bsb20/bustub

Late Policy

• You have a total of four late days to be used for the semester
– Calendar days, not “business days”

• No late days for Project 0

• We will grant no-penalty extensions due to extreme circumstances
(e.g., medical emergencies). These circumstances must be
documented with the university. Do not email for an extension
without attaching university documentation. We will not reply to
emails without documentation.
– If something comes up, please contact the instructors as soon as possible.

9

Office Hours

• Instructors and TAs will hold office hours on weekdays (Mon-
Fri) at different times.

• Additional meetings can be made by appointment, or if there is
overwhelming demand (e.g. project deadline)

• We need your help to schedule these, scheduling survey will
arrive via email this week

10

<serious>

Office Hours: Do’s and Don’t’s

• Do:
– Come to office hours or make an appointment

– Discuss material from the lectures/bootcamps/textbook

– Discuss testing/debugging tools to help with projects

– Discuss high-level issues or conceptual questions about the projects

• Don’t:
– Ask a TA or classmate to debug your code

– Copy code that isn’t yours (more on this…)

– Act unreasonably towards instructors, TAs, other students

12

AI Policy

• Goal: A realistic, enforceable policy that acknowledges the
reality of how humans program computers in 2025

• Caveat: still need to teach a course with gradable, right-sized
assignments

• Policy: the limited use of AI is permitted, but students are
wholly responsible for ensuring that their solutions adhere to
the course policy on plagiarism

• Things that might be ok when working on project:

– High level questions: “how does postgres store large objects?”

– Limited coding assistance “include the library for std::sort”

13

Some Advice

• Don’t get in over your head with the AI generated code

– Especially on Project 0

PLAGIARISM WARNING

• There is no group collaboration on assignments or exams in this course

• Exams are closed book (closed everything)

• You may not copy source code from other people or sources

• If you choose to use AI, you are responsible for ensuring you are submitting
your own work

• From the syllabus: “Students are responsible for ensuring that submitted
work is not substantially similar to existing publicly or privately available
materials”

• Plagiarism is an honor code violation. This is your only warning.
– Please ask me (not TAs!) if you are unsure.

15

One More Thing…

• We are using open source course materials, especially BusTub

• Make sure your Github fork of BusTub is private

– (follow instructions on site/README)

• Making your solutions public (or distributing them in any way) is
an honor code violation

• But also, its harmful to the CS Ed. Community

• And you’ll have to answer to Andy Pavlo who wrote BusTub…

</serious>

Project 0

C++ Bootcamp

• Need to get up to speed quickly on C++. Three main approaches

– Reading. Links on website to online tutorials, examples, books

– Recitation. Instructor-led sessions to go through C++ features, examples,
pitfalls. For students coming from Java / C.

– Writing. Project 0 will give a tour of C++ and the dev environment for the
semester. Future projects will be harder.

19

https://bsb20.github.io/421_f25/docs

Textbook

• Database System Concepts
7th Edition
Silberschatz, Korth, & Sudarshan

20

Official Course Textbook

http://db-book.com/

Some other good books

• Operating Systems: Three Easy Pieces
(OSTEP), (Arpaci-Dusseau)2

– Free online at:
https://pages.cs.wisc.edu/~remzi/OSTEP/

• A Tour of C++, Stroustrup

• Effective modern C++, Meyers

• Links on website

21

https://pages.cs.wisc.edu/~remzi/OSTEP/

C++ Bootcamp

• Need to get up to speed quickly on C++. Three main approaches

– Reading. Links on website to online tutorials, examples, books

– Recitation. Instructor-led sessions to go through C++ features, examples,
pitfalls. For students coming from Java / C.

– Writing. Project 0 will give a tour of C++ and the dev environment for the
semester. Future projects will be harder.

22

https://bsb20.github.io/421_f25/docs

Bootcamp 1: Week of 8/25
23

Two identical 1 hour sessions (pick one):

8/25 @ 6:30 pm
SN014

8/26 @ 6:30 pm
SN014

We will provide food:

Pizza? Burritos? Other?

RSVP Now!

Room might
change!

Bootcamp 2

• Will do a similar thing on more advanced C++ features

• Will coincide with release of Project 1

• Will try and incorporate feedback from Bootcamp 1 / Project 0

C++ Bootcamp

• Need to get up to speed quickly on C++. Three main approaches

– Reading. Links on website to online tutorials, examples, books

– Recitation. Instructor-led sessions to go through C++ features, examples,
pitfalls. For students coming from Java / C.

– Writing. Project 0 will give a tour of C++ and the dev environment for the
semester. Future projects will be harder.

25

https://bsb20.github.io/421_f25/docs

Project 0 (P0): Goals

• Get you started on C++, so you are not surprised later.

• Get you thinking about algorithms and (a bit) about concurrency.

• P0 is about building a HyperLogLog data structure.

• Probabilistic data structure used for sketching in large-scale a distributed DMBSs

• The data structure is cool, but is not really the point

• P0 is published; due 9/3/25 @ 11:59:59.

• No late days allowed for P0.

26

If you have a bad time on this project,
you’re gonna have a bad time in this course

https://bsb20.github.io/421_f25/p0
https://bsb20.github.io/421_f25/p0

Project 0 (P0): Tips and Tricks

• Start now so you can get the most out of Bootcamp 1 and be ready when

these projects get harder

• Follow instructions on either the P0 page or the BusTub github to set up your

dev environment and build BusTub.
• In general, we won’t ask you to mess with the build system (cmake), but you should

understand what the different options do

• Learn how to use the GTest testing framework used for testing BusTub.

HINT: You will probably have to run the hyperloglog_test suite locally,

and look into test/primer/hyperloglog_test.cpp to figure out how

to pass all tests.
• Future projects might not make all tests visible. Writing your own tests will become

super helpful.

27

<course>

High-level Problem

High-level Problem
H

D
D

 C
ap

ac
it

y

Memory/storage have grown
Storage capacity = ~100x DRAM remains common
Today: 10’s – 100’s GB DRAM : 1’s -10’s TB of SSD/HDD per server

Latency Numbers Every Programmer Should Know

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

1 sec

4 sec

100 sec

4.4 hours

3.3 weeks

1.5 years

31.7 years

Source: Colin Scott

31

Or: the whole story of COMP 421 in one table

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Numbers Every Programmer Should Know

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Source: Colin Scott

32

Volatile

Non-volatile, single node

Non-volatile, off-node

https://colin-scott.github.io/personal_website/research/interactive_latency.html

The Database Dilemma

• Want persistent storage and durable updates (storage), but also fast,

complex data processing (memory)

Latency Numbers Every Programmer Should Know

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Source: Colin Scott

34

$$$$$

$

Cost
Per
Byte

Capacity

~ 100 KB per core

~ 2 MB per core

~ 100’s GB

~ 1’s TB

~ 10’s TB

PBs per AWS Avail. Zone

Multi-zone backups

https://colin-scott.github.io/personal_website/research/interactive_latency.html

The Database Dilemma

• Want data persistence and durable updates (storage), but also

fast/complex data processing (memory)

• Want to process a drive worth of data (e.g. TB) using a server’s worth

of memory (e.g. 64 GB)

Latency Numbers Every Programmer Should Know

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Source: Colin Scott

36

$$$$$

$

Cost
Per
Byte

~ 100 KB per core

~ 2 MB per core

~ 100’s GB

~ 1’s TB

~ 10’s TB

PBs per AWS Avail. Zone

Multi-zone backups

10’s – 100’s cores per server

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Latency Numbers Every Programmer Should Know

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Source: Colin Scott

37

$$$$$

$

Cost
Per
Byte

~ 100 KB per core

~ 2 MB per core

~ 100’s GB

~ 1’s TB

~ 10’s TB

PBs per AWS Avail. Zone

Multi-zone backups

Maybe 100’s of servers per warehouse

https://colin-scott.github.io/personal_website/research/interactive_latency.html

The Database Dilemma

• Want data persistence and durable updates (storage), but also

fast/complex data processing (memory)

• Want to process a drive worth of data (e.g. TB) using a server’s worth

of memory (e.g. 64 GB)

• To leverage available compute, need concurrency at every level:

intraquery, interquery, single-node, distributed database (multi-node)

• Want abstractions to hide hardware/system design from users

Latency Numbers Every Programmer Should Know

1 ns L1 Cache Ref

4 ns L2 Cache Ref

100 ns DRAM

16,000 ns SSD

2,000,000 ns HDD

~50,000,000 ns Network Storage

1,000,000,000 ns Tape Archives

Source: Colin Scott

39

Example: disk performance
under different workloads

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head
3. Read data is it rotates by

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head
3. Read data is it rotates by

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head
3. Read data is it rotates by

Spinning Rust

Platter, spinning @ 15k RPM

Data encoded in magnetic
material (historically iron oxide)
Arranged in tracks

Actuated read head
seeks between tracks

To read (simplified):
1. Seek to correct track
2. Wait for red data to rotate to
the read head
3. Read data is it rotates by

Spinning Rust

Platter, spinning @ 15k RPM Some math…
Total time to read X bytes:

𝑇𝑠𝑒𝑒𝑘 = Time to move the read head
to right track

𝑇𝑟𝑜𝑡 = Time to rotate to desired data
(sector)

𝑇𝑟𝑒𝑎𝑑 = Time for read head to pass
over data

Access Time ≈ 𝑇𝑠𝑒𝑒𝑘 + 𝑇𝑟𝑜𝑡 + 𝑇𝑟𝑒𝑎𝑑

Spinning Rust

Platter, spinning @ 15k RPM Some math…
-Average seek time: 2ms
-Average rotational time:
 1/(15k RPM / 60)=4ms/rotation
 we wait 2 ms on average
-Sequential read speed: 300 MB/s

To read 4KB of data:
2ms+ 2ms +.013 ms = 4.013ms

~1 MB/s

3GB of sequential data:
2ms+ 2ms + 10s = 10.002 s

299.94 MB/s ≈ 300 MB/s

Spinning Rust

Platter, spinning @ 15k RPM • Sequential reading/writing of
storage is essential
• 2 orders of magnitude difference

for HDD!
• Less difference for SSD, other

reasons to write sequentially

• Want to hide this from users
• Don’t want to think about this

while writing queries

• Want abstractions to help ourselves
as system programmers

In This Course….

• Want data persistence and durable updates (storage), but also fast/complex

data processing (memory)

• Want to process a drive worth of data (e.g. TB) using a server’s worth of

memory (e.g. 64 GB)

• To leverage available compute, need concurrency at every level: intraquery,

interquery, single-node, distributed database (multi-node)

• Want abstractions/architecture to hide hardware/system details from users

Lec. 3-4, Storage manager

Lec. 13-15, Query Exec./Opt.

Lec. 6, Memory mgmt. Lec. 21, Recovery

Lec. 7-12, I/O optimized data structures, algorithms.

Lec. 16-19, Concurrency Control Lec. 22-24, Distributed databases

Lec 1 - 2.5, Relational algebra, SQL Lec 5, Storage Models Lec 20, Logging

Next Class…

• The relational algebra (a brief history of databases)

• The basic data and programming model of a relational database

• Why an idea from 1969 is still popular today

• Some popular would-be alternatives

	Slide 1: COMP 421: Files & Databases
	Slide 2: WaitList
	Slide 3: Course Overview
	Slide 4: Course Pages
	Slide 5: Course Pages
	Slide 6: Course Pages
	Slide 7: Grading
	Slide 8: Projects
	Slide 9: Late Policy
	Slide 10: Office Hours
	Slide 11: <serious>
	Slide 12: Office Hours: Do’s and Don’t’s
	Slide 13: AI Policy
	Slide 14: Some Advice
	Slide 15: PLAGIARISM WARNING
	Slide 16: One More Thing…
	Slide 17: </serious>
	Slide 18: Project 0
	Slide 19: C++ Bootcamp
	Slide 20: Textbook
	Slide 21: Some other good books
	Slide 22: C++ Bootcamp
	Slide 23: Bootcamp 1: Week of 8/25
	Slide 24: Bootcamp 2
	Slide 25: C++ Bootcamp
	Slide 26: Project 0 (P0): Goals
	Slide 27: Project 0 (P0): Tips and Tricks
	Slide 28: <course>
	Slide 29: High-level Problem
	Slide 30: High-level Problem
	Slide 31: Latency Numbers Every Programmer Should Know
	Slide 32: Latency Numbers Every Programmer Should Know
	Slide 33: The Database Dilemma
	Slide 34: Latency Numbers Every Programmer Should Know
	Slide 35: The Database Dilemma
	Slide 36: Latency Numbers Every Programmer Should Know
	Slide 37: Latency Numbers Every Programmer Should Know
	Slide 38: The Database Dilemma
	Slide 39: Latency Numbers Every Programmer Should Know
	Slide 40: Spinning Rust
	Slide 41: Spinning Rust
	Slide 42: Spinning Rust
	Slide 43: Spinning Rust
	Slide 44: Spinning Rust
	Slide 45: Spinning Rust
	Slide 46: Spinning Rust
	Slide 47: Spinning Rust
	Slide 48: Spinning Rust
	Slide 49: Spinning Rust
	Slide 50: In This Course….
	Slide 51: Next Class…

