COMP 421: Files & Databases

Lecture 1: The Relational Algebra

EEEEEEEEEEEE
CCCCCCCCCCCCCCC

Wait List Update

* First few admissions off the waitlist are starting to trickle in

* |f you are in line, stay in line

EEEEEEEEEEEE
CCCCCCCCCCCCCCC

Announcements

* Thanks for RSVPing to Bootcamp 1:
— Monday, 8/25 @ 6:3QJFB009
— Tuesday, 8/26 @ 6:30§FB009

e Please fill out the when2meet poll for office hours on canvas
— Stopgap office hours: Friday 8/22, 10:00-11:30 & 2:00-4:00, FB 336
* You should be starting on PO

— Please have your dev environment set up before Bootcamp 1
— Follow instructions on PO / Github README
— Come resolve issues on Friday

Note the room change!

EEEEEEEEEEEE
COMPUTER SCIENCE

* Database Systems Background
* Relational Model

e Relational Algebra

* Alternative Data Models

EEEEEEEEEEEE
CCCCCCCCCCCCCCC

* Organized collection of inter-related data that models some
aspect of the real-world.

* Databases are the core component of most computer
applications.

EEEEEEEEEEEE
COMPUTER SCIENCE

Database Example 6

* Create a database that models a digital music store to keep
track of artists and albums.

* |Information we need to keep track of in our store:

— Information about Artists
— The Albums those Artists released

EEEEEEEEEEEE
COMPUTER SCIENCE

Flat File Strawman

e Store our database as comma-separated value (CSV) files that
we manage ourselves in application code.

— Use a separate file per entity.

— The application must parse the files each time they want to
read/update records.

Artist(name, year, country) Album(name, artist, year)
"Wu-Tang Clan",1992, "USA" "Enter the Wu-Tang","Wu-Tang Clan",1993
"Notorious BIG",1993, "USA" "St.Ides Mix Tape", "Wu-Tang Clan",1994
"GZA" 1991, "USA" "Liquid Swords", "GZA",1995

EEEEEEEEEEEE
COMPUTER SCIENCE

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

Flat File Strawman

 Example: Get the year of the first GZA album.

Artist(name, year, country)

"Wu-Tang Clan",1992, "USA"
"Notorious BIG", 1993, "USA"

"GZA", 1991, "USA"

EEEEEEEEEEEE
COMPUTER SCIENCE

»

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":
print(int(record[1]))

Flat Files: Data Integrity

* How do we ensure that the artist is spelled the same for each
album entry?

* What if somebody overwrites the album year with an invalid
string?

 What if there are multiple artists on an album?

 What happens if we delete an artist that has albums?

EEEEEEEEEEEE
COMPUTER SCIENCE

Flat Files: Implementation

* How do you find a particular record?

 What if we now want to create a new application that uses the
same database? What if that application is running on a
different machine?

 What if two threads try to write to the same file at the same
time?

EEEEEEEEEEEE
COMPUTER SCIENCE

Flat Files: Durability

 What if the machine crashes while our program is updating a
record?

 What if we want to replicate the database on multiple
machines for high availability?

EEEEEEEEEEEE
COMPUTER SCIENCE

Flat Files: Durability

Some applications (such as databases) don’t enjoy this trade-off. Thus,
to avoid unexpected data loss due to write buffering, they simply force

~ Operating

| System S , writes to disk, by calling fsync (), by using direct I/O interfaces that
C : , work around tjee smemby using the raw disk interface and avoiding
' Threé Easy Pieces the file syste While most applications live with the trade-
offs made by —y , there are enough controls in place to get the

system to do what you want it to, should the default not be satisfying.

2Take a database class to learn more about old-school databases and their former insis-
tence on avoiding the OS and controlling everything themselves. But watch out! Those

Remzi Arpaci-Dusseau :
Aniiros AteschDtsesi: database types are always trying to bad mouth the OS. Shame on you, database people. Shame.

I | UNC

DEPARTMENT OF
COMPUTER SCIENCE

Are You Sure You Want to Use MMAp in Your
Database Management System?

drew Crotty Viktor [¢ Andrey, Pay]q
Ca.rnegie Mellon Universily University of ErIangen-Nuremberg Ca.rnegie Mellon Un.iversity 7
andrewcr@cs.{:mu.edu Viktur.]eis@ au.de pavlo@cs.emu.edu

ABSTRACT Page cache, Tp, POSIX 3P System ca)y aPS a file oy secondary e
Memory-mapped (nmap) file /0y is an OS~pmv1'ded featyre that Storage into the Virtya) addresg Space of the caller (ie, the DBMS), t
T2ps the contenys of a file gp secondary, Storage intg , Togram’s and the Og) ”3“3" load pages Lazily whey the Dyg Aaccesses a

t DX;\E de-r?am_i'rlf then? ‘:. ot emﬁz:‘?emﬂ? fora adds toq much Complexity With ng Commensyrage Performane,
:::;5; f’or;; to ma;:i;:: AR exdsting page 110 longer benefit gpg strongfy urge DRy developers to avojg Using mmap, 4 t ' Those
fe iti b 18
Traditionally, DBMss implemem the Movement of Pages pe. i Placemeny ora rraditiona) ufer pooy h Ou ¢

b
. addregg Spa Program thep, accessey Pages viy Pointers ;¢ them, T, the D, + the datahage ‘Ppears o reside fully iy, Memory,
hC if the fije resided entirely i memory, The 0s transparenﬂy loads but the g handles necessary Paging behing the scepes rather g
me app Pages ony, when the Program references them apg automatically than the DBMs' buffer pog)
- 3 0 evicts Pages jfmemgry fills up, On the Surface, MMAp seemg like gy attractive mqplementation
e L 4 = - . d unexp mmap’s Perceived g of use hag seduced dapy base Managemen; Option fop Managing f1, o ina QB 5. The mogs otable bepe gy, e_
g v . t aVOl System (DBMs) develgpeyg for decageg a5 a vighje alternatiye to € ease of g, and loy; f"‘g“?t‘e“"g 05t The Dpyg 16 longey
¢ 0 . k implementing 2 buffer Pool. There are, however, Severe correct. nieeds g rack whic), Pages are i, mcm-my, nor does j; need to trycl
¥ . . to dls 4 ness ang Performape, issues witp, ™Map that are not inuncdiately Bow often Pages are accessed or Wh{Ch Pages are d"“ty ’-Ylm‘ﬂfis e
P o wrlte S aPparen;. Such Problems make j difficult, ; not impussible, fo yse the DRpgg can SHply aceegs dxsk-reszdent data viy Pointers a4 ;¢
s d Mmap correctly yng efﬂmently ing Mmodery DBMS, 1y fact, Severa] it were 3'-‘“551“3 data 11 memgy, ¥ while 133"“"5 all IQW‘IC"’EI Page
: " § rk aroun: Popular gy Initially ygaq 3P £ support large, “than-mepyq, DAnagement 1y gp OS. If the available oty fills UP, then the .
' ’ W 0 databages but sooy Chcountereg these hidden perils, forcing them tq OS will free shace for ey, Pages by t, Ansparently, EVicting (idealry
0 ¢ . S te Switch to Managing . Lo themselyeg after significant Cigineering Unneeded) Pages from tne Page Cache.
; A ﬁle Sy COsts. In thig Ay, minap ang DBMSs are Jig coffee ang Spicy fog. From 5 Performanc, PeIspectiye, Map shoulgq 2050 have gy,
> e 21 unfortyn g, Combination fygy becomes ObVious afe, the fact, lower Overhead thap , raditiong) buffer pagy SP“C‘H"AH% Mmap
’ 4 . 2 de by Since develnpers keep Irying 1o use mmap g, new DBMSS, we does pot incur the Cost of explicit System cajjg (ie., read/wri te)
’ A = 0 ffs ma Wrote thig Paper 1 Provide 5 Warning g, others thy; Mmap i nota and avggg Tedundgpy ccpymg to 4 buffey in uger SPace becayge the
’ do Suitable rey, Cement for 5 fraditiong) buffer Pool. We discuss the a1 access Pages directly from the o DPage cache,
’ . ~ 4 t m to main shcrtcenlings of mmap i detai] gng our €Xperimenty analysi Since the carly 1980, these SUpposed bcneﬁtsbave Enticed DBpfg
1 ' SYS e demunstrates clear Performang,. tations, ed on thege find developers to forgo implementin butfe, Pool ang instead rely
ings, we conchude vy, o Prescription f,, when Dp)g developeys o the O3 ¢, 'ge fle 10 (36]. 1n fact, the developers of Severa]
might considey USIng mmap for file I/p), Well-knigyyy DBMSs (see Section 23) have 8one down g Path,
With some even toytip, Mmap as 5 key fagtor in achieving good
1IN TRODUC TION Performay e, [20].)) _
An meartantfeamre of disk-baseq DBMS; i thejr ty Support Unfbrtunate]y: orap bas 4 hidden - ke si © wi Ly sordi
b 1 h bl 1 i Problem; m, desirable f, file 1/() jy, a DBA; As
rabases that ar, Srwer than the vailzble p hysica °rY. This describe jy, this p, per, these Problemg Mvolve bogp data safety ang
ctmnahl‘y OWS 3 yg, query 5 database 38 if it regjgag €ntire] " £ N We tend that g,
i ifit dgeg ot it gl 5 once. DBALg achieye thig System pe oneerns. We contend . engineerin .
:lrll rr?cm;’s Y. Eve_*n - fdata g d N £ HDD steps Tequired ¢, Overcome them Degate the Purporteq Stmplicity . 1 S_
usu._m };]r:]«::ljmg Pages of g, TOm secop, Y storage (eg, d of Working wip, mmap. For these reasons, y,e believe that mmap f Ormer ms

. S € Iemainge, of thig Paper jg Tganized o folloys, We begin
f d b 1, ch in- . S . h
g:::; ?;niarym:d::;ie::;g:’:x;;;mﬁspﬁe :;?;&;3 With a ghoy backgroung g, ™3P (Section 3 followed by ¢ gjere " 1 e. S ame.
Write Thee Ale 1o T —— CODY data 1 and from o 1 ffer sion of jg main Problemg (Section 3) and ggy SXperimentq) Analygig eop
in use; space, wiry, the Dp S maintai{’m complete COntrof gye (Section 4). We then disengg Telated v, rk {Section 5) and conclyde
b Q how an dl; ei] it trans fers Page & comp] With a g Ary of oy Buidance Wwhen You migpy consider using
2 k e a da ta a"' A]ternativel}', the DBpg can relinqyjgy the Tesponsip, 3P i your Dhms (Sects)
Ta . . Mavement g, the Og, which Maintaing jpq own filg
aVOldlng Thig Paper jg Publigheq under the Creatiye Commpng ALLrilvuIiun 4.0 Inzemau'uml 2 R BACKGROUND
nCe 01‘1 BY 40 liceng, Auu,m_n-m_ve their rigp o m}sgmnazf the Wark o theq, S section Provides ¢ releyvany backgmund On mmap, e begin
te ypes are ‘ WPP’ T i s P T v oo e e o b
b ase t SYstems Regeqregy (WO 27, Joaniaty .13 20y Chaminade, 1y Posix Mmap Apy, 1. We discygg real-worlg mplementatigy, s of
d ata Mmap-baseq Systems,

: i i-Dusseau :
ﬁﬁrc?;ze]aAEr)sgci-‘Du_sseau .

RTMENT .
-PARTME ven
?})IMPL"[]:R SCIE

@ UNC .

Database Management System

* A database management system (DBMS) is software that
allows applications to store and analyze information in a
database.

* A general-purpose DBMS supports the definition, creation,
qguerying, update, and administration of databases in
accordance with some data model.

EEEEEEEEEEEE
COMPUTER SCIENCE

Data Models

* A data modelis a collection of concepts for describing the data
in a database.

* A schema is a description of a particular collection of data,
using a given data model.

— This defines the structure of data for a data model.
— Otherwise, you have random bits with no meaning.

EEEEEEEEEEEE
COMPUTER SCIENCE

Data Models

& MisCOBNISS
& Simple Apps / Caching

* Graph
 Document /JSON / XML / Object
* Wide-Column / Column-famil

* Array (Vector, Matrix, Tensor)

 Hierarchical

< NoSQL

& ML/ Science

* Network
& Obsolete / Legacy / Rare

* Semantic

* Entity-Relationship

EEEEEEEEEEEE
COMPUTER SCIENCE

Early DBMSs

* Early database applications were difficult to build and maintain
on available DBMSs in the 1960s.
— Examples: IDS, IMS, CODASYL
— Computers were expensive, humans were cheap.

* Tight coupling between logical and physical layers.

* Programmers had to (roughly) know what queries the
application would execute before they could deploy the

database.

EEEEEEEEEEEE
COMPUTER SCIENCE

https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/CODASYL

* T¢
|B

e (Cc
re
tir

Iaq

e De
19

DEPARTMH
COMPUTEH

il | UNC

DANCY AND CONSISTENC

REDUNDANCY O DATA BANKS

STORED IN L

78N 7 (pd.d -
search Dw.\smn.
Sa‘:ne Jose, California

DERIVABILITY,

ated d

The large, integr;icus degree

ABSTRACT: 3
tain many > ;
;gz oo ford::t; :i: defined and 21§Eu
on i Ofi:f3::e accessibility of certa
tg be in great demand.
sible
ists, those respon
Ziizt it and have soxe ?ii:
inconsistencies in the iariad v
i king might be helpfu
zgiiibly fraudulent) changes

1969
R3 s99(# 12343) August 19,

f the
for control o
< of detecting an

IBUTION NOTICE - This

been
1sewhere angg::z. As a courtesy

tributed until after

LIMITED DISTR

ublication € h i
l(insseminatmn of 1§5 fi‘;s
chould not be widely
publication. -
be requested from I8M Thomas). Wats

Copies may New York 10598

Yorktown Heights,

Y OF RELATIONS

ons of va ions
latd of stored relati g

when eith
y "logical”
1 set of stored rel

in the data bank

s bi o
rﬁgﬁ g: a Research Report for

i1l

f the future w >
o ba:ksinostored form. It will

be redundant.
by One type may be
i of information

ktzdzype of redundancy
d;ta bank should know
ations. Consistency
nauthorized (and
contents.

een submitted for

the intended publisher,

- date of outside

the

. :
earch Center, Post office Box 218
ar ’

it

Information Retrieval

P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. Copp
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such inf ion is not a satisf y solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some pects of the external rep i

are changed. Changes in data P

traffic and natural growth in the types of stored information.

Existing noninferential, f d data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inad quacies of these model.
are discussed. A model based on n-ary relations, @ normal
form for data base relations, and the concept of a universal
data sublanguage are infroduced hSecOioanortoinopera-
tions on relations (other than logical inference) are discussed
and applied to the probl of redundancy and i Y
in the user's model,

KEY WORDS AND PHRASES: data bonk, data base, doto structure, data
h of data, ks of data, relations, derivability,

d ¥e istency, v loin, retrieval language, predicote
calculus, security, data integrity
CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 422, 429

1. Relational Model and Normal Form

L1 INTRODUCTION

This paper is concerned with the application of ele-
mentary relation theory to systems which provide shared
access to large banks of formatted data, Except for a paper
by Childs [1], the principal application of relations to data
systems has been to deductive question-answering systems,
Levein and Maron (2] provide numerous references to work
in this area,

In contrast, the problems treated here are those of data
i the independence of application pr

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3, 4] presently in vogue for non-
inferential systems. It provides a means of deseribing data
with its natural structure only—that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations—these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaki
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logieal
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
syst to support the relati al model are not discussed.

1.2. Data DEPENDENCIES 1N Present Systems

The provision of data description tables in recently de-
veloped information systems represents g major advance
toward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank, However, the variety of
data representation characteristics which can be changed
without logically 4 pairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
wbemmovedm:ordeﬁng‘ 'pendence, indexing depend
ence, and access path depend, In some systems these
dependencies are not clearly separable from one another,

L2.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involy-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the bardware-determined ordering

and terminal activities from growth in data types and
changes in data representation—and certain kinds of data
nconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

of add: . For ple, the

Communications of the ACM 377

https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82
http://dl.acm.org/citation.cfm?id=1558336
http://dl.acm.org/citation.cfm?id=362685

CODASYL

e The Differences and Similarities
Between the Data Base Set and

Relational Views of Data.

— ACM SIGFIDET Workshop on Data

Description, Access, and Control in Ann

Arbor, Michigan, held 1-3 May 1974

Codd Bachrﬁan
UNC

DEPARTMENT OF
COMPUTER SCIENCE

[}

Stonebraker

I Neyt r— Nt I

COBOL/CODASYL camp:

1. The relational model is too mathematical. No
mere mortal programmer will be able to under-
stand your newfangled languages.

2. Even if you can get programmers to learn your
new languages, you won’t be able to build an
efficient implementation of them.

3. On-line transactiongprocessing applications want
to do record-oriented operations.

Empty set

Relational camp:

1. Nothing as comphcated as the DBTG proposal can
possibly be the right way to do data management.

2. Any set-oriented query is too hard to program
using the DBTG data manipulation language.

3. The CODASYL model has no formal underpin-
ning with which to define the semantics of the
complex operations in the model.

The record set, basic structure of navigational (e.g. CODASYL) databse model. A set consists
of one parent record (also called "the owner"), and n child records (also called members records)

https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.sigmod.org/publications/dblp/db/conf/sigmod/sigmod74-1.html
https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

Relational Model

 The relational model defines a database abstraction based on
relations to avoid maintenance overhead.

* Key tenets:
— Represent database using simple data structures (relations).
— Physical storage left up to the DBMS implementation.

— Access data through high-level language, DBMS figures out best
execution strategy.

EEEEEEEEEEEE
COMPUTER SCIENCE

Relational Model

e Structure: The definition of the database’s relations and their

contents of their physical representation.

* Integrity: Ensure the database’s contents satisfy constraints.

* Manipulation: Programming interface for accessing and
modifying a database's contents.

EEEEEEEEEEEE
COMPUTER SCIENCE

Data Independence

* Isolate the user/application from _Application | | _Application

low-level data representation.
— The user only worries about high-level

External " External

J

HoEt . . Schema | | Schema
application logic. Views (SQL)
— DBMS optimizes the layout according | (lj-ogica‘ljData
to operating environment, database '"¢cPendence [:
Logical Schema
contents, and workload. .
o Physical Data Schema, Constraints...
— DBMS can then re-optimize the Independence » (sat)
database if/when these factors [Physical]
changes. Schema

Pages Files, Extents...

EDatabas
@ UNC Storage

COMPUTER SCIENCE

Relational Model

 Arelationis an unordered set of

elements describing some entities. Artist(name, year, country)

Each element in a relation is

name

year country

described via the same attributes. Wu-Tang Clan 999 |USA
Notorious BIG 1992 USA
* Elements are modeled as tuples: a —_ ST
list of attribute values.
— Domain: possible attribute values n-ary Relation
— Values are (normally) atomic/scalar. =
— The special value NULL is a member of Table with n columns

every domain (if allowed).

DEPARTMENT OF
COMPUTER SCIENCE

itional Model

et of
Keith Deviin e :
 Sets tities. Artist(name, year, country)
e Joy ©
\s of ry name year country
Fundament@ cer Theo
Conie‘;‘dm::w utes. Wu-Tang Clan 1992 | USA
El Notorious BIG 1992 USA
o a .
) € 3. d GZA 1990 | USA
list o
— Do n-ary Relation
— Valu =
— The of Table with n columns
every

Relational Model

* Structure: The definition of the database’s relations and their
contents independent of their physical representation.

. Ensu re the database’s contents satisfy constraints.

* Manipulation: Programming interface for accessing and
modifying a database's contents.

EEEEEEEEEEEE
COMPUTER SCIENCE

Relational Model: Primary Keys

* Arelation's primary key uniquely
identifies a single tuple.
 Some DBMSs automatically create

an internal primary key if a table
does not define one.

* DBMS can auto-generation unique
primary keys via an identity
column:

— IDENTITY (SQL Standard)

— SEQUENCE (PostgreSQL / Oracle)
— AUTO_INCREMENT (MySQL)

COMPUTER SCIENCE

Ararsistdnamemeyegearcoantingpy)

country

101 [Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 | GZA 1990 USA

https://en.wikipedia.org/wiki/Identity_column
https://en.wikipedia.org/wiki/Identity_column

* A foreign key specifies that an
attribute from o
map to a some aftribute of a tuple
in another relati

m

ArtistAlbum(artist_id, album_id)

artist_id album_id

DEPARTMENT OF
COMPUTER SCIENCE

101

Relational Model: Foreign Keys

11

101 22
103 22
102 22

Artist(id, name, year, country)
id name year country
101 |Wu-Tang Clan 1992 USA
102 |Notorious BIG 1992 USA
103 |GZA 1990 USA
m(Hlmum (iathe)hamet,i stesr year)
id rid name
11 |11 |Enter the Wu-Tang 1993 (993
22 |22 |St.Ides Mix Tape 1994 (994
33 (33 [Liquid Swords 1995 |995

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

Relational Model: Foreign Keys

Parent
Artist(id, name, year, country)
id name year country
Child Child 101 |Wu-Tang Clan 1992 [USA
ArtistAlbum(artist_id, album_id) 102 | Notorious BIG 1992 | USA
artist_id album_id 103 | GZA 1990 |USA
101 1 Parent .
o . Album(id, name, year)
103 29 id name year
102 29 11 |Enter the Wu-Tang 1993
22 |St.Ides Mix Tape 1994
33 |Liquid Swords 1995

i UNC

== DEPARTMENT OF
COMPUTER SCIENCE

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc

Relational Model: Constraints

e User-defined conditions that must Artist(id, name, year, country)

hold for any instance of the id name year country
database. 101 |Wu-Tang Clan 1992 |USA
— Can validate data within a single tuple 102 |Notorious BIG 1992 |USA
or across entire relation(s). — T
— DBMS prevents modifications that
violate any constraint. CREATE TABLE Artist (
* Unique key and referential (fkey) name ‘I’Q_'?CHAR NOT NULL,
. year INT,
constraints are the most common. country CHAR(60),
e SQL:92 supports global asserts but CHECK (year > 1900)
these are rarely used (too slow).)
CREATE ASSERTION myAssert
CHECK (<SQL>);

m

DEPARTMENT OF
COMPUTER SCIENCE

Relational Model

* Structure: The definition of the database’s relations and their
contents independent of their physical representation.

* Integrity: Ensure the database’s contents satisfy constraints.

* | Manipulation:|Programming interface for accessing and
modifying a database's contents.

EEEEEEEEEEEE
COMPUTER SCIENCE

Data Manipulation Languages (DML)

* The APl that a DBMS exposes to applications to store and
retrieve information from a database.

* Procedural:

< Relational
— The query specifies the (high-level) strategy to find Algebra
the desired result based on sets / bags.
* Non-Procedural (Declarative): « Relational

— The query specifies only what data is wanted and Calculus

not how to find it.

Relational Algebra

 Fundamental operations to retrieve
and manipulate tuples in a relation.

— Based on set algebra (unordered lists with
no duplicates).

e Each operator takes one or more
relations as its inputs and outputs a
new relation.

— We can “chain” operators together to
create more complex operations.

o C A Q

X

EEEEEEEEEEEE
COMPUTER SCIENCE

Select
Projection
Union
ntersection
Difference

Product

Join

Relational Algebra: Select

. Choosg a subset qf t.he tuples from R(a_id,b_id)
a relation that satisfies a selection
predicate. al 101
— Predicate acts as a filter to retain only :z lgi

tuples that fulfill its qualifying 23 |04

requirement.

— Can combine multiple predicates using
conjunctions / disjunctions.

O, ig="a2' <R> O, id='a2'A b_id>102<R> T

a_id b_id
a2 102 a2 103

a2 103

) SyntaX: 0.predicate(R)
SELECT x FROM R
| WHERE a_id='a2' AND b_id>102j

DEPARTMENT OF
COMPUTER SCIENCE

Relational Algebra: Projection

Generate a relation with tuples
that contains only the specified
attributes.

— Rearrange attributes’ ordering.

— Remove unwanted attributes.

— Manipulate values to create derived
attributes.

Syntax: Il,; », an(R)

EEEEEEEEEEEE
COMPUTER SCIENCE

R(a_id,b_id)

al 101
a2 102
a2 103
a3 104

Hb_id-ma,a_id("a_id:'az' (R))

b_id-100 a_id

2 a2
3 a2

SELECT b_1id-100, a_id
FROM R WHERE a_id = 'a2';

Relational Algebra: Union

e Generate a relation th.at contains R(a id, b _id) S(a id, b id)
all tuples that appear in at least
one input relation. 101 103

a2 102 a4 104

° Syntax: (R U S) a3 103 ab 105

(RUS)

al 101

a2 102

(SELECT * FROM R) a3 103
UNION ad 104
(SELECT * FROM S): a5 |105

EEEEEEEEEEEE
COMPUTER SCIENCE

Relational Algebra: Intersection

* Generate a relation that coqtains R(a id,b id) S(a id.b id)
only the tuples that appear in both
of the input relations. 101 103

a2 102 a4 104

e Syntax: (R N S) a3 [1e3 a5 __|105

(RN S)
a_id b_id
a3 103

(SELECT * FROM R)
INTERSECT
(SELECT * FROM S);

EEEEEEEEEEEE
COMPUTER SCIENCE

Relational Algebra: Difference

e Generate a relation that contains

. R(a id, b _id) S(a id, b _id)
only the tuples that appear in the
first and not the second of the 101 103
input relations. 2z 102 24 o

a3 103 ab 105
¢ Syntax: (R - S) (R - S)

(SELECT * FROM R)
EXCEPT

(SELECT * FROM S);

EEEEEEEEEEEE
COMPUTER SCIENCE

al

101

a2

102

Relational Algebra: Cartesian Product

Generate a relation that contains
all possible combinations of tuples
from the input relations.

Syntax: (R x S)

R(a id, b _id)

101

a2

102

S(a id, b _id)

103

a3

103

104

SELECT * FROM R CROSS JOIN S;

SELECT * FROM R, S;

COMPU'I ER SCIENCE

R.a_id

al

101

105

S.b_

103

id

al

101

104

al

101

105

a2

102

103

a2

102

104

a2

102

105

a3

103

103

a3

103

104

a3

103

105

m

Relational Algebra: Join

* Generate a relation that contains R<a id, b id) st 1d b id, val)
all tuples that are a combination of
two tuples (one from each input 101 103
relation) with a common value(s) a2 19 ad 1104 yvy
for one or more attributes. == (R 50 ;; 10 12

R.a_id R.b_id S.e d S.; '.d S.val a_id b_id val

.

SELECT * FROM R NATURAL JOIN S;
SELECT * FROM R JOIN S USING (a_id, b_id);

e Syntax: (R ™ S)

103 | XXX

a3 103 a3 103 XXX

SELECT * FROM R JOIN S
UNC ON R.a_id = S.a_id AND R.b_id = S.b_id;

Relational Algebra: Extra Operators

* Rename (p)

* Assignment (R<S)
 Duplicate Elimination (0)
» Aggregation (Y)
 Sorting (T)

* Division (R+S)

EEEEEEEEEEEE
CCCCCCCCCCCCCCC

Observation

* Relational algebra defines an ordering of the high-level steps of
how to compute a query.
— Examp|e: O'b_id=1@2<RNS) VS. RN<O'b_id=1@2(S))

* A better approach is to state the high-level answer that you
want the DBMS to compute.

— Example: Retrieve the joined tuples from R and S where b_id equals
102.

EEEEEEEEEEEE
COMPUTER SCIENCE

Data Manipulation Languages (DML)

* Procedural: < Relational
— The query specifies the (high-level) strategy to find Algebra

the desired result based on sets / bags.

* Non-Procedural (Declarative): & Relational

— The query specifies only what data is wanted and Calculus
not how to find it.

' Codd’s Theorem

Relational - Relational
Algebra Calculus

@ UNC | bk “Logically Equivalent”

COMPUTER SCIENCE

https://www.nap.edu/read/12473/chapter/15#82
https://www.nap.edu/read/12473/chapter/15#82

Relational Model: Queries

* The relational model is independent of any query language
implementation.

e SQL is the de facto standard (many dialects).

EEEEEEEEEE
COMPUTER SC

for line in file.readlines():
record = parse(line)
if record[0] == "GZA":
print(int(record[1]))

SELECT year FROM artists
WHERE name = 'GZA';

OF
IENCE

Data Models

e Relational

. & This Course

* Graph

*| Document / JSON / XML / Object | ¢ Leading Alternative

* Wide-Column / Column-family
e Array Matrix, Tensor) € New Hotness
* Hierarchical
* Network
* Semantic
. Entity Relationship
m N

EEEEEEEEEEEE
COMPUTER SCIENCE

Document Data Model

* A collection of record documents containing a hierarchy of
named field/value pairs.

— A field’s value can be either a scalar type, an array of values, or
another document.

— Modern implementations use JSON. Older systems use XML or
custom object representations.

* Avoid “relational-object impedance mismatch” by tightly
coupling objects and database.

QMongoDB® R'A"."'::%NDB DynamoDB P\ Firebase
iI=) CouchDB -
@FINC @5 () Couchbase 8 MarkLogic' ¥ fauna

Artist

Album

EEEEEEEEEEEE
COMPUTER SCIENCE

Document Data Model

Application Code

"name": "GZA",
"year": 1990,
"albums": [
{
"name": "Liquid Swords",
"year": 1995
3,
{
"name": "Beneath the Surface",
"year": 1999
3

Vector Data Model

* One-dimensional arrays used for nearest-neighbor search
(exact or approximate).

— Used for semantic search on embeddings generated by ML-trained
transformer models (think ChatGPT).

— Native integration with modern ML tools and APIs (e.g., LangChain,
OpenAl).

e At their core, these systems use specialized indexes to perform
NN searches quickly.

{,:g} Pinecone w Weaviate @) milvus ‘drant

]

COMPUTER SCIENCE

Vector Data Model

Album(id, name, year) Embeddings
@OPGHN (5] Hugging Face Id1 > [0.32, 0.78, 0.30, ...]
11 |Enter the Wu-Tang 1993 Id2 » [0.99, 0.19, 0.81, ...]
22 |St.Ides Mix Tape 1994 » » Id3 > [0.01, 0.18, 0.85, ...]
33 |Liquid Swords 1995 :

[0.02, 0.10, 0.24, |..
Query ‘

Find albums similar

Vector

TEPYT ! Ranked List of Ids +
toI Liquid Swords ’: 1 Index

HNSW, IVFFlat
Meta Faiss, Spotify Annoy

UNC

DEPARTMENT OF
COMPUTER SCIENCE

m

https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=pJk0p-98Xzc
https://www.youtube.com/watch?v=swLJyjk-OGI
https://youtu.be/5qDhaWqeNMc
https://arxiv.org/abs/1603.09320
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/spotify/annoy

Conclusion

e Databases are ubiquitous.

* Relational algebra defines the primitives for processing queries
on a relational database.

* We will see relational algebra again when we talk about query
optimization + execution.

EEEEEEEEEEEE
COMPUTER SCIENCE

Next Class

e Modern SQL

— Make sure you understand basic SQL (e.g. textbook Ch. 3) before the
lecture.

EEEEEEEEEEEE
CCCCCCCCCCCCCCC

	Slide 1: COMP 421: Files & Databases
	Slide 2: Wait List Update
	Slide 3: Announcements
	Slide 4: Today…
	Slide 5: Database
	Slide 6: Database Example
	Slide 7: Flat File Strawman
	Slide 8: Flat File Strawman
	Slide 9: Flat Files: Data Integrity
	Slide 10: Flat Files: Implementation
	Slide 11: Flat Files: Durability
	Slide 12: Flat Files: Durability
	Slide 13: Flat Files: Durability
	Slide 14: Database Management System
	Slide 15: Data Models
	Slide 16: Data Models
	Slide 17: Early DBMSs
	Slide 18: Early DBMSs
	Slide 19: CODASYL
	Slide 20: Relational Model
	Slide 21: Relational Model
	Slide 22: Data Independence
	Slide 23: Relational Model
	Slide 24: Relational Model
	Slide 25: Relational Model
	Slide 26: Relational Model: Primary Keys
	Slide 27: Relational Model: Foreign Keys
	Slide 28: Relational Model: Foreign Keys
	Slide 29: Relational Model: Constraints
	Slide 30: Relational Model
	Slide 31: Data Manipulation Languages (DML)
	Slide 32: Relational Algebra
	Slide 33: Relational Algebra: Select
	Slide 34: Relational Algebra: Projection
	Slide 35: Relational Algebra: Union
	Slide 36: Relational Algebra: Intersection
	Slide 37: Relational Algebra: Difference
	Slide 38: Relational Algebra: Cartesian Product
	Slide 39: Relational Algebra: Join
	Slide 40: Relational Algebra: Extra Operators
	Slide 41: Observation
	Slide 42: Data Manipulation Languages (DML)
	Slide 43: Relational Model: Queries
	Slide 44: Data Models
	Slide 45: Document Data Model
	Slide 46: Document Data Model
	Slide 47: Vector Data Model
	Slide 48: Vector Data Model
	Slide 49: Conclusion
	Slide 50: Next Class

