COMP 421: Files & Databases

Lecture 12: Joins

COMPUTER SCIENCE

2
Announcements

Mid-term Exam on Monday Oct 20t

— In-class in this room.

— Review session in class on Oct. 15t

— Format: 5 Big Questions: Q1 will have some multiple choice, other
questions mostly open response

— Know the material, but do not focus on memorizing every minute
detail, we will try and test concepts.

— Know design, guarantees, runtimes of algos and data structures from
lecture

— Textbook provides many good problem with solutions for practice

Come to class Wednesday with specific questions! | will puli
up slides and explain anything you want in greater detail. No

questions? We'll talk about more data structures.

Last Week 3

Last week was data structure week!

In addition to previously discussed B+Tree...
Bloom Filters

Skip Lists

How to make these things concurrent/thread-safe
Atomic instructions (compare-and-swap)
OS-level mutexes (futex)

Reader-writer latches

Latch protocols (e.g., latch crabbing for B+Trees)

COMPUTER SCIENCE

Course Progress Check-In .

We are done with Access Methods!

Operator Execution Query Planning

* How to translate relational rators in :
ow to translate relational operators into Operator Execution

fast code
e Good news: one of the hard ones, sorting, ‘ Access Methods |

we've already done
* Today: the other hard one, joins Buffer Pool Manager

Goal: want fast, 1/O efficient operators Disk Manager
to use when we get to query planning
and execution

m | UNC
” | DEPARTMENT OF
COMPUTER SCIENCE

Why Do We Need To Join?

We normalize tables in a relational database to
avoid unnecessary repetition of information.

We then use the join operator to reconstruct the
original tuples without any information loss.

Join Algorithms 6

We will focus on performing binary joins (two

tables) using inner equijoin algorithms.
— These algorithms can be tweaked to support other joins.

— Multi-way joins exist primarily in research literature
(e.g., worst-case optimal joins).

In general, join algorithms work better when we

can identify the smaller of the two tables

— The optimizer will (try to) figure this out when
generating the physical plan.

https://en.wikipedia.org/wiki/Worst-case_optimal_join_algorithm
https://en.wikipedia.org/wiki/Worst-case_optimal_join_algorithm
https://en.wikipedia.org/wiki/Worst-case_optimal_join_algorithm

Query Plan 7

The operators are arranged in a tree. A O R Ag, . Eeette
FROM R JOIN S

ON R.id = S.id
Data flows from the leaves of the WHERE S.value > 100

tree up towards the root.

— We will discuss the granularity of the t
data movement next lecture. TC R.id, S.cdate
t
The output of the root node is the NR-id=5-id

result of the query.

\
G value>100
g

Join Operators 8

Decision #1: Output SELECT Fé.id, S.cdate
— For each row of the join, what data is FROM R JOIN S

: : ON R.id = S.id
emitted to the parent operator in the
query plan tree? WHERE S.value > 100

. o t
Decision #2: Cost Analysis Criteria TU =.id, s.cdate
— How to design/choose an algorithm to t
identify which rows to emit? M R.id=S.id

\
G value>100
g

Operator Output 9

SELECT R.id, S.cdate

For tuple re R and tuple s € S that
match on join attributes ‘ FROM R JOIN S |
J ’ ON R.id = S.id

concatenate rand s together into a WHERE S.value > 100
new tuple.
t

Output contents can vary: TU =10, 5. cdae
— Depends on processing model o
— Depends on storage model M R 1d=s.1d ‘
— Depends on data requirements in query

Gvalue>1@0

X

Early Materialization:
— Copy values for the attributes in outer
and inner tuples into new output tuple.

Subsequent operators in the query
plan never need to go back to the
base tables to get more data.

AR (id,n;

123 |ab

Operator Output: Tuple Data

SELECT R.1id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

t
n R.id, S.cdate
t

MR.id=S.id

)

=

R.id R.name S.id S.value S.cdate
123 |abc 123 (1000 :3@/13/202
123 abc 123 2000 ;0/13/202

Operator Output: Record IDs

Late Materialization:

— Only copy the joins keys along with the
Record IDs of the matching tuples.

Ideal for column stores because the
DBMS does not copy data that is not
needed for the query.

Illl .
— DEPARTMENT OF
COMPUTER SCIENCE

R(i

123

SELECT R.1id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

t
TC 0[]
t

ab

MR.id=S.id

R.id R.RID S.id S.RID
123 |R.#4HE (123 |S.#Ht

123 [R.#4H (123 [S.#iHt
|

What Algorithm to Use?

Given a query that joins table R with
table S, assume the DBMS has the

following information those tables:
— M pages in table R, m tuplesin R
— N pages in table S, n tuplesin S

Cost Metric: # of I/Os to compute join

SELECT R.1id, S.cdate
FROM R JOIN S
ON R.id = S.1id
WHERE S.value > 100

— lgnore result output costs because it depends on the data

and is the same for all algorithms.

— lgnore computation / network costs (for now).
— When sequential vs. random 1/O is an issue, I'll point it out

Join Algorithms

Nested Loop Join
— Naive
— Block
— |Index

Sort-Merge Join

Hash Join

— Simple

— GRACE (Externally Partitioned)
— Hybrid

COMPUTER SCIENCE

Naive Nested Loop Join

SELECT .1d._ S cdate
’Q‘ foreach tuple r € R:«—— Qute

X

oWy foreach tuple s € S:«— |nner \
Don't if r and s match then emit _,R s
Do This!
R(id name) S(id, value, cdate)
MethodMan 100 2222 10/13/202
200 |GZA 5
100 |Andy 500 |7777 10/13/202
300 |oDB >
=) 100 l6666 15@/13/2@2
700 |Ghostface
mUNG ., 400 |Raekwon 100 [9999 ;@/ 137202

Naive Nested Loop Join

Why is this algorithm bad?

R(id, name) S(id, value, cdate)

id name i value cdate i

600 |MethodMan 2222 [10/10/25

200 |GZA 7777 [10/10/25 | | N pages

100 __|And 6666 |10/10/25 n tuples
mtuples 300 |ODB 9999 |10/10/25

500 |RZA

200 (8888 [10/10/25 i
700 |Ghostface

=_%
LIl ‘&thgrw 400 |Raekwon

Why is this algorithm bad?

— Read every tuplein R

— For every tuple in R, scans S once

Cost: M + (m - N)

R(id, name)
i id name

600 [MethodMan

200 |GZA

100 [Andy

300 |0ODB

500 |RZA

700 |Ghostface
| 400 [Raekwon

S(id,value,cdatez

id value cdate

100

2222

Naive Nested Loop Join

10/13/202
5

500

7777

10/13/202
5

400

6666

10/13/202
5

| N pages
n tuples

100

9999

10/13/202
5

Naive Nested Loop Join

Example database:

— Table R: M = 1000, m = 100,000
— Table S: N =500, n = 40,000]‘4 KB pages -> 6 MB

Cost Analysis:
— M+ (m - N)=1000 + (100000 - 500) = 50,001,000 I0s
— At 0.1 ms/I0, Total time = 1.3 hours

What if smaller table (S) is used as the outer
table?

— N+ (n- M) =500 + (40000 - 1000) = 40,000,500 10s
— At 0.1 ms/IO, Total time = 1.1 hours

COMPUTER SCIENCE

Block Nested Loop Join

foreach block B; € R:
foreach block B. €

foreach tuple r € Bg:
foreach tuple s € B.:

if r and s match then emit

All in memory!

R(id, name) S(id, value, cdate)

id name id value cdate i

600 |MethodMan 100 [2222 [10/10/25

200 |GZA 500 |7777 |10/10/25 | | N pages
M pages | Lo [and 400 (6666 [10/10/25 n tuples
m tuples 300 |ODB 100 {9999 [10/10/25

500 |RZA 200 |8888 [10/10/25

700 [Ghostface
Eﬁ EJR%;FW‘ 400 [Raekwon

Block Nested Loop Join

This algorithm performs fewer disk accesses.

— For every block in R, it scans S once.

Costt M+ (M- N)
R(id, name)
id name
600 |MethodMan
200 [GZA
100 |And
m tuples | [3ee_ [oDB
500 |RZA
700 |[Ghostface
_EE E%gig%&mE | 400 [Raekwon

S(id,value,cdatez

id

100

value cdate

2222

10/10/25

500
400

1777
6666

10/10/25
10/10/25

100

9999

10/10/25

200

8888

10/10/25

| N pages
n tuples

Block Nested Loop Join

The smaller table should be the outer table.
Compare: M+(M-N) vs. N+ (N - M)

It turns out this also improves sequential 1/0

R(id, name) S(id, value, cdate)

id name id value cdate i

600 |MethodMan 100 [2222 [10/10/25

200 |GZA 500 |7777 |10/10/25 | | N pages
M pages | Lo [and 400 (6666 [10/10/25 n tuples
m tuples 300 |ODB 100 {9999 [10/10/25

500 |RZA 200 |8888 [10/10/25

700 |Ghostface
il ‘%ﬂpggﬂw 400 |Raekwon

What About The Buffer Pool?

IfW fl 1 cr . 11
oreach B -2 pages p; € R:
U 2,
foreach page p. € S:
— U " output.
All in memory!
1T r and S matc en eml
R(id, name) S(id, value, cdate)
id__nae
600 |MethodMan 100 [2222 [10/10/25
200 |GZA 500 |7777_|10/10/25 | | N pages
M pages | [1e0_[andy 400 |6666 |10/10/25 n tuples
m tuples | [30e_|oos 100 9999 [10/10/25
500 |RZA 200 |8888 [10/10/25 | _
700 [Ghostface
B .. _ [t

COMPUTER SCIENCE

Block Nested Loop Join

This algorithm uses B-2 buffers for scanning R.
Cost: M + ([m / (B-Z)_| - N)

If the outer relation fits in memory (B-2>M):
— Cost: M+ N =1000 + 500 = 1500 1/Os
— At 0.1ms per 1/O, Total time = 0.15 seconds

If we have B=102 buffer pages:

— Cost: M+ (| M/ (B-2)] - N) = 1000 + 10-500 = 6000 I/Os
— Or can switch inner/outer relations, giving us cost:

500 + 5-1000 = 5500 1/0s
— Total time = 0.55 seconds

Nested Loop Join

name
MethodMan

GZA

Andy

Ghostface

id

Why is the basic nested loop join so bad?

— For each tuple in the outer table, we do a sequential scan to check for a
match in the inner table.

value cdate

400 10/10/25
100 10/10/25
200 10/10/25

Raekwon

Quadratic # of comparisons to find a linear number of matches
— Lots of wasted work
— ldea: Data structure / algorithm to find matches with fewer comparisons

Index Nested Loop Join

Assume the cost of each index lookup is C per tuple.
Cost: M+ (m - C)

R(id, name)
i id name

600 [MethodMan

200 |GZA

100 [Andy

300 |0ODB

500 |RZA

700 |Ghostface
| 400 [Raekwon

S(id,value,cdatez

id value cdate

100

2222

10/13/202
5

500

7777

10/13/202
5

400

6666

10/13/202
5

Index(S.id)

| N pages
n tuples

100

9999

10/13/202
5

Index Nested Loop Join

The hidden cost of index nested loop joins: random 1/0O
Block nested loop join: # Disk Seeks = 2M
Index nested loop join: # Disk Seeks =M +m - C_,,

Index(S.id)

R(id, name) S(id, value, cdate)

id__name |

600 [MethodMan 100 (2222 |10/10/25

200 |GZA 500 |7777_|10/10/25 | | N pages

100 __|And 400 6666 [10/10/25 n tuples
m tuples 300 |ODB 100 [9999 |10/10/25

500 |RZA 200 (8888 [10/10/25
700 |Ghostface
il UNC 400 |Raekwon

)

=

Index Nested Loop Join

Assume 0.1 ms |/Os and 4 ms sef

Block nested loop join (minima
— #1/0Os=N+ (N - M) =500,500 1/Q
— # Disk Seeks = 2N = 1000 seeks

— Total time = 50 seconds + 4 secq

Index nested loop join using a B+
— #1/0s=N+ (n-5) = 1000 + 200,000 = 200,100 I/C
— # Disk Seeks = N + (n - 5) = 200,100 seeks

— Total time = = 20 seconds + 800 seconds = 820 seconds

COMPUTER SCIENCE

Nested Loop Join Summary

Key Takeaways

— Pick the smaller table as the outer table.

— Buffer as much of the outer table in memory as possible.
— Loop over the inner table (or use an index).

Algorithms
— Nalive
— Block
— Index

What to improve?

Index-based method didn't "glue together" the index and
the algorithm. Need to jointly optimize algorithm and data
structure.

Sort-Merge Join

Phase #1: Sort

— Sort both tables on the join key(s).

— You can use any appropriate sort algorithm

— These phases are distinct from the sort/merge phases of
an external merge sort, from the previous class

Phase #2: Merge

— Step through the two sorted tables with cursors and
emit matching tuples.

— May need to backtrack to handle duplicates

ENT OF
COMPUTER SCIENCE

Sort-Merge Join

S(id, value, cdate) SELECT R.id, S.cdate
' FROM R JOIN S
10/13/202 ON R.id = S.id
> WHERE S.value > 100
10/13/202
5
10/13/202
5 Output Buffer
R
100 | and. 1on lanan 10/13/202
10/13/202 o T 10/13/202
g oo leza ann loooo 10/13/202
ann ez non |oooo 10/13/202
400 |peclwvenlonn lccee 10/13/202
| UNC 500 |RzA |500 |7777 ;@”3/2@2

Sort-Merge Join Cost (Best Case)

Sort Cost (R): 2M - (1 + [log,., [M / B]])
Sort Cost (S): 2N - (1 + [logs, [N/ B]1)
Merge Cost: (M + N)

Total Cost: Sort + Merge

COMPUTER SCIENCE

Sort-Merge Join Cost (Best Case)

Example database:
— Table R: M =1000, m = 100,000
— Table S: N =500, n=40,000

With B=100 buffer pages, both R and S can be

sorted in two passes:

— Sort Cost (R) = 2000 - (1 + [logge 1000 /100]) = 4000 1/Os
—> Sort Cost (S) = 1000 - (1 + [logs, 500 / 100]) = 2000 I/Os
— Merge Cost = (1000 + 500) = 1500 1/0s

— Total Cost = 4000 + 2000 + 1500 = 7500 1/0s

— At 0.1 ms/I0, Total time = 0.75 seconds

Sort-Merge Join Cost (Worst Case)

The worst case for the merging phase is when the
join attribute of all the tuplesin both relations
contains the same value.

Cost: (M - N) + (sort cost)

COMPUTER SCIENCE

When Is Sort-Merge Join Useful?

One or both tables are already sorted on join key.
Output must be sorted on join key.

The input relations may be sorted either by an
explicit sort operator, or by scanning the relation
using an index on the join key.

Observation

Sort-Merge Join pros and cons:
v’ Used block-based layout and
v" Could take advantage of buffer pool
X Still suffered from indexing overhead
X Still suffered from excessive random |/O

Hash join tries to avoid these issues
v Make use of blocks/buffers
v' Mostly sequential I/0
v Low indexing overhead

Hash Join

Idea: Hash tuples into n buckets based on join key (e.g., id)

R(id, name) S(id, value, cdate)
Ry Ngs=——-- > 5
\N~~--
Ry | So~3I7*5%
Q<m0
s SO
Ry Sy

Forr € R;and s € S;, hy(r.id) # hy(s.id), so
we don't need to compare R; to §;

EN
COMPUTER SCIENCE

Hash Join

Idea: Hash tuples into n buckets based on join key (e.g., id)

R(id, name)

C

Inspect for

matches

S(id, value, cdate)

©

Forr € R;ands € S;, hy(r.id) = h,(s.id), so
either we had a hash collision, orr.id = s.id

COMPUTER SCIENCE

Simple Hash Join Algorithm

Phase #1: Build

— Scan the outer relation and populate a hash table, HT,
using the hash function h; on the join attributes.

— We can use any hash table that we discussed before but in
practice linear probing works the best.

Phase #2: Probe

— Scan the inner relation and use h, on each tuple to jump to
a location in the hash table and find a matching tuple.

For starters, assume HT fits in memory on B buffers

Simple Hash Join Algorithm

foreach tuple r € R:

insert h,(r) into hash table HT;
foreach tuple s € S:

output, if h,(s) € HT,

R(id, name) H asI_II1TF;I'ab le S(id, value, cdate)

@
C ®

& 00
.\056 'f (/ 0

COMPUTER SCIENCE

COMPUTER SCIENCE

Hash Joins Of Large Relations

What happens if we do not have enough memory to fit
the entire hash table?

Buffer pool manager might swap out pages of HT at
random

Need a principled approach to minimize I/0O in this case

Partitioned Hash Join

Hash join when tables do not fit in

memory.

— Partition Phase: Hash both tables on the
join attribute into partitions.

— Probe Phase: Compares tuplesin
corresponding partitions for each table.

Sometimes called GRACE Hash Join.
— Named after the GRACE database GRACE
machine from Japan in the 1980s. University of Tokyo

https://en.wikipedia.org/wiki/Database_machine
https://en.wikipedia.org/wiki/Database_machine
http://museum.ipsj.or.jp/en/computer/other/0014.html
http://museum.ipsj.or.jp/en/computer/other/0014.html

Partitioned Hash Join (Partition Phase)

Hash R into B buckets.
Hash S into B buckets with same hash function.
Write buckets to disk when they get full.

R(id,name) HTg HT - S(id,value, cdate)

COMPUTER SCIENCE

Partitioned Hash Join Probe Phase

Read corresponding partitions i air at a
time, use simple hash joinon t

But wait, R; might have many o
R(id,name) HTy
0
1
h; 2 h,
B-1

Partitioned Hash Join Edge Cases

Option 1: If a single join key has too many
matching records that do not fit in memory, use a

block nested loop join just for that key.
— Avoids random 1I/0O in exchange for sequential I/O.

Option 2: If a partition does not fit in memory,
recursively partition it with a different hash

function
— Repeat as needed
— Eventually hash join the corresponding (sub-)partitions

Recursive Partitioning

S(id,value,cdate)

()H)

R(id, name)

COMPUTER SCIENCE

Cost Of Partitioned Hash Join

If we do not need recursive partitioning:
— Cost: 3(M + N)

Partition phase:
— Read+write both tables
— 2(M+N) 1/Os

Probe phase:
— Read both tables (in total, one partition at a time)
— M+N 1/Os

E
COMPUTER SCIENCE

Partitioned Hash Join

Example database:
— M =1000, m =100,000
— N =500, n =40,000

Cost Analysis:
— 3(M + N) =3 (1000 + 500) = 4,500 10s
— At 0.1 ms/I0, Total time = 0.45 seconds

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

Hash Join Observations

The inner table can be any size .
— Only outer table (or its partitions) need to fit in memory

If we know the size of the outer table, then we

can use a static hash table.
— Less computational overhead

If we do not know the size, then we must use a
dynamic hash table or allow for overflow pages.

COMPUTER SCIENCE

Join Algorithms: Summary

Algorithm

10 Cost

Example

Naive Nested Loop Join
Block Nested Loop Join
Index Nested Loop Join

Sort-Merge Join

Hash Join

COMPUTER SCIENCE

M + (m - N)
M+([M/(B-2)] - N)
M+ (m - C)

M + N + (sort cost)
3:-(M+N)

1.3 hours
0.55 seconds
>20 seconds
0.75 seconds
0.45 seconds

Conclusion

Hashing is almost always better than sorting for
operator execution.

Caveats:
— Sorting is better on non-uniform data.
— Sorting is better when result needs to be sorted.

Good DBMSs use many/all approaches when
needed

EN
COMPUTER SCIENCE

Next Class

Midterm Review

Come with questions!

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

Optimization: Probe Filter

<E

Create a probe filter (Bloom Filter)
as the DBMS builds the hash table

on the outer table in the first phase

— Always check the filter before probing
the hash table.

— Faster than probing hash table because
the filter fits in CPU cache.

This technique is sometimes called
sideways information passing.

m | UNC
” | DEPARTMENT OF
COMPUTER SCIENCE

.......

...... > |

| ?Bloo’m

3
\J
.,

A

\J

Filter,

»'
LS
*
()
0
%
-
LN

L]
L]
L]
L
L]
L
Ll
Ll
L4
L4
&
4
'0
n?®

https://en.wikipedia.org/wiki/Bloom_filter

Optimization: Hybrid Hash Join

If the keys are skewed, then the DBMS keeps the
hot partition in-memory and immediately
perform the comparison instead of spilling it to
disk.

— Difficult to get to work correctly. Rarely done in practice.

R(id, name) HILT . S(id, value, cdate)
)
1
2

max

COMPUTER SCIENCE

9

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Last Week
	Slide 4: Course Progress Check-In
	Slide 5: Why Do We Need To Join?
	Slide 6: Join Algorithms
	Slide 7: Query Plan
	Slide 8: Join Operators
	Slide 9: Operator Output
	Slide 10: Operator Output: Tuple Data
	Slide 11: Operator Output: Record IDs
	Slide 12: What Algorithm to Use?
	Slide 13: Join Algorithms

	Nested Loop Join
	Slide 14: Naïve Nested Loop Join
	Slide 15: Naïve Nested Loop Join
	Slide 16: Naïve Nested Loop Join
	Slide 17: Naïve Nested Loop Join
	Slide 18: Block Nested Loop Join
	Slide 19: Block Nested Loop Join
	Slide 20: Block Nested Loop Join
	Slide 21: What About The Buffer Pool?
	Slide 22: Block Nested Loop Join
	Slide 23: Nested Loop Join
	Slide 24: Index Nested Loop Join
	Slide 25: Index Nested Loop Join
	Slide 26: Index Nested Loop Join
	Slide 27: Nested Loop Join Summary

	Sort-Merge Join
	Slide 28: Sort-Merge Join
	Slide 29: Sort-Merge Join
	Slide 30: Sort-Merge Join Cost (Best Case)
	Slide 31: Sort-Merge Join Cost (Best Case)
	Slide 32: Sort-Merge Join Cost (Worst Case)
	Slide 33: When Is Sort-Merge Join Useful?

	Hash Joins
	Slide 34: Observation
	Slide 35: Hash Join
	Slide 36: Hash Join
	Slide 37: Simple Hash Join Algorithm
	Slide 38: Simple Hash Join Algorithm
	Slide 39: Hash Joins Of Large Relations
	Slide 40: Partitioned Hash Join
	Slide 41: Partitioned Hash Join (Partition Phase)
	Slide 42: Partitioned Hash Join Probe Phase
	Slide 43: Partitioned Hash Join Edge Cases
	Slide 44: Recursive Partitioning
	Slide 45: Cost Of Partitioned Hash Join
	Slide 46: Partitioned Hash Join
	Slide 47: Hash Join Observations

	Conclusion
	Slide 48: Join Algorithms: Summary
	Slide 49: Conclusion
	Slide 50: Next Class

	OLD
	Slide 51: Optimization: Probe Filter
	Slide 52: Optimization: Hybrid Hash Join

