
COMP 421: Files & Databases

Lecture 12: Joins

Announcements
Mid-term Exam on Monday Oct 20th

→ In-class in this room.
→ Review session in class on Oct. 15th

→ Format: 5 Big Questions: Q1 will have some multiple choice, other
questions mostly open response

→ Know the material, but do not focus on memorizing every minute
detail, we will try and test concepts.

→ Know design, guarantees, runtimes of algos and data structures from
lecture

→ Textbook provides many good problem with solutions for practice

Come to class Wednesday with specific questions! I will pull
up slides and explain anything you want in greater detail. No
questions? We'll talk about more data structures.

2

Last Week

Last week was data structure week!

 In addition to previously discussed B+Tree...

 Bloom Filters

 Skip Lists

How to make these things concurrent/thread-safe

 Atomic instructions (compare-and-swap)

 OS-level mutexes (futex)

 Reader-writer latches

 Latch protocols (e.g., latch crabbing for B+Trees)

3

Course Progress Check-In

We are done with Access Methods!

Operator Execution
• How to translate relational operators into

fast code
• Good news: one of the hard ones, sorting,

we've already done
• Today: the other hard one, joins

Goal: want fast, I/O efficient operators
to use when we get to query planning
and execution

4

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Why Do We Need To Join?

We normalize tables in a relational database to
avoid unnecessary repetition of information.

We then use the join operator to reconstruct the
original tuples without any information loss.

5

Join Algorithms

We will focus on performing binary joins (two
tables) using inner equijoin algorithms.
→ These algorithms can be tweaked to support other joins.
→ Multi-way joins exist primarily in research literature

(e.g., worst-case optimal joins).

In general, join algorithms work better when we
can identify the smaller of the two tables
→ The optimizer will (try to) figure this out when

generating the physical plan.

6

https://en.wikipedia.org/wiki/Worst-case_optimal_join_algorithm
https://en.wikipedia.org/wiki/Worst-case_optimal_join_algorithm
https://en.wikipedia.org/wiki/Worst-case_optimal_join_algorithm

Query Plan

The operators are arranged in a tree.

Data flows from the leaves of the
tree up towards the root.
→ We will discuss the granularity of the

data movement next lecture.

The output of the root node is the
result of the query.

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




7

Join Operators

Decision #1: Output
→ For each row of the join, what data is

emitted to the parent operator in the
query plan tree?

Decision #2: Cost Analysis Criteria
→ How to design/choose an algorithm to

identify which rows to emit?

8

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Operator Output

For tuple r ∈ R and tuple s ∈ S that
match on join attributes,
concatenate r and s together into a
new tuple.

Output contents can vary:
→ Depends on processing model
→ Depends on storage model
→ Depends on data requirements in query

9

Operator Output: Tuple Data

Early Materialization:
→ Copy values for the attributes in outer

and inner tuples into new output tuple.

Subsequent operators in the query
plan never need to go back to the
base tables to get more data.

id name

123 abc

id value cdate

123 1000
10/13/202
5

123 2000
10/13/202
5

⨝
R(id,name) S(id,value,cdate)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




R.id R.name S.id S.value S.cdate

123 abc 123 1000
10/13/202
5

123 abc 123 2000
10/13/202
5

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

10

Operator Output: Record IDs

Late Materialization:
→ Only copy the joins keys along with the

Record IDs of the matching tuples.

Ideal for column stores because the
DBMS does not copy data that is not
needed for the query.

11

id name

123 abc

id value cdate

123 1000
10/13/202
5

123 2000
10/13/202
5

⨝
R(id,name) S(id,value,cdate)

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




R.id R.RID S.id S.RID

123 R.### 123 S.###

123 R.### 123 S.###

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

What Algorithm to Use?

Given a query that joins table R with
table S, assume the DBMS has the
following information those tables:
→ M pages in table R, m tuples in R
→ N pages in table S, n tuples in S

Cost Metric: # of I/Os to compute join
→ Ignore result output costs because it depends on the data

and is the same for all algorithms.
→ Ignore computation / network costs (for now).
→ When sequential vs. random I/O is an issue, I'll point it out

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

12

Join Algorithms

Nested Loop Join
→ Naïve
→ Block
→ Index

Sort-Merge Join

Hash Join
→ Simple
→ GRACE (Externally Partitioned)
→ Hybrid

13

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Naïve Nested Loop Join

foreach tuple r ∈ R:
 foreach tuple s ∈ S:
 if r and s match then emit

Outer
Inner

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222
10/13/202
5

500 7777
10/13/202
5

400 6666
10/13/202
5

100 9999
10/13/202
5

200 8888
10/13/202
5

R S

⨝

14

Don't
Do This!

Naïve Nested Loop Join

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

15

Why is this algorithm bad?

Naïve Nested Loop Join

Why is this algorithm bad?
→ Read every tuple in R
→ For every tuple in R, scans S once

Cost: M + (m ∙ N)

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222
10/13/202
5

500 7777
10/13/202
5

400 6666
10/13/202
5

100 9999
10/13/202
5

200 8888
10/13/202
5

16

Naïve Nested Loop Join

Example database:
→ Table R: M = 1000, m = 100,000
→ Table S: N = 500, n = 40,000

Cost Analysis:
→ M + (m ∙ N) = 1000 + (100000 ∙ 500) = 50,001,000 IOs
→ At 0.1 ms/IO, Total time ≈ 1.3 hours

What if smaller table (S) is used as the outer
table?
→ N + (n ∙ M) = 500 + (40000 ∙ 1000) = 40,000,500 IOs
→ At 0.1 ms/IO, Total time ≈ 1.1 hours

4 KB pages → 6 MB

17

Block Nested Loop Join

foreach block BR ∈ R:
 foreach block BS ∈ S:
 foreach tuple r ∈ BR:
 foreach tuple s ∈ Bs:
 if r and s match then emit

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

18

All in memory!

Block Nested Loop Join

This algorithm performs fewer disk accesses.
→ For every block in R, it scans S once.

Cost: M + (M ∙ N)

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

19

Block Nested Loop Join

The smaller table should be the outer table.

Compare: M + (M ∙ N) vs. N + (N ∙ M)

It turns out this also improves sequential I/O

20

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

What About The Buffer Pool?

If we have B buffers available:
→ Use B-2 buffers for each chunk of the outer table.
→ Use one buffer for the inner table, one buffer for output.

foreach B - 2 pages pR ∈ R:
 foreach page pS ∈ S:
 foreach tuple r ∈ B - 2 pages:
 foreach tuple s ∈ ps:
 if r and s match then emit

21

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

All in memory!

Block Nested Loop Join

This algorithm uses B-2 buffers for scanning R.

Cost: M + (M / (B-2) ∙ N)

If the outer relation fits in memory (B - 2 > M):
→ Cost: M + N = 1000 + 500 = 1500 I/Os
→ At 0.1ms per I/O, Total time ≈ 0.15 seconds

If we have B=102 buffer pages:
→ Cost: M + (M / (B-2) ∙ N) = 1000 + 10∙500 = 6000 I/Os
→ Or can switch inner/outer relations, giving us cost:
 500 + 5∙1000 = 5500 I/Os
→ Total time ≈ 0.55 seconds

22

Nested Loop Join

Why is the basic nested loop join so bad?
→ For each tuple in the outer table, we do a sequential scan to check for a

match in the inner table.

Quadratic # of comparisons to find a linear number of matches
→ Lots of wasted work
→ Idea: Data structure / algorithm to find matches with fewer comparisons

23

id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

Index Nested Loop Join

Assume the cost of each index lookup is C per tuple.

Cost: M + (m ∙ C)

foreach tuple r ∈ R:
 foreach tuple s ∈ Index(ri = sj):
 if r and s match then emit

Index(S.id)

24

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222
10/13/202
5

500 7777
10/13/202
5

400 6666
10/13/202
5

100 9999
10/13/202
5

200 8888
10/13/202
5

Index Nested Loop Join

The hidden cost of index nested loop joins: random I/O

Block nested loop join: # Disk Seeks = 2M

Index nested loop join: # Disk Seeks = M + m ∙ Cseek

foreach tuple r ∈ R:
 foreach tuple s ∈ Index(ri = sj):
 if r and s match then emit

Index(S.id)

25

M pages
m tuples

N pages
n tuples

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

400 Raekwon

id value cdate

100 2222 10/10/25

500 7777 10/10/25

400 6666 10/10/25

100 9999 10/10/25

200 8888 10/10/25

Index Nested Loop Join
26

Assume 0.1 ms I/Os and 4 ms seek times

Block nested loop join (minimal buffers):
→ # I/Os = N + (N ∙ M) = 500,500 I/Os
→ # Disk Seeks = 2N = 1000 seeks
→ Total time ≈ 50 seconds + 4 seconds = 54 seconds

Index nested loop join using a B+Tree of height 5:
→ # I/Os = N + (n ∙ 5) = 1000 + 200,000 = 200,100 I/Os
→ # Disk Seeks = N + (n ∙ 5) = 200,100 seeks
→ Total time ≈ ≈ 20 seconds + 800 seconds = 820 seconds

Nested Loop Join Summary

Key Takeaways
→ Pick the smaller table as the outer table.
→ Buffer as much of the outer table in memory as possible.
→ Loop over the inner table (or use an index).

Algorithms
→ Naïve
→ Block
→ Index

What to improve?
Index-based method didn't "glue together" the index and
the algorithm. Need to jointly optimize algorithm and data
structure.

27

Sort-Merge Join

Phase #1: Sort
→ Sort both tables on the join key(s).
→ You can use any appropriate sort algorithm
→ These phases are distinct from the sort/merge phases of

an external merge sort, from the previous class

Phase #2: Merge
→ Step through the two sorted tables with cursors and

emit matching tuples.
→ May need to backtrack to handle duplicates

28

Sort-Merge Join

R(id,name) S(id,value,cdate)
id name

600 MethodMan

200 GZA

100 Andy

300 ODB

500 RZA

700 Ghostface

200 GZA

400 Raekwon

id value cdate

100 2222
10/13/202
5

500 7777
10/13/202
5

400 6666
10/13/202
5

100 9999
10/13/202
5

200 8888
10/13/202
5

id name

100 Andy

200 GZA

200 GZA

300 ODB

400 Raekwon

500 RZA

600 MethodMan

700 Ghostface

id value cdate

100 2222
10/13/202
5

100 9999
10/13/202
5

200 8888
10/13/202
5

400 6666
10/13/202
5

500 7777
10/13/202
5

Sort!

Sort!

R.id R.name S.id S.value S.cdate

100 Andy 100 2222
10/13/202
5

100 Andy 100 9999
10/13/202
5

200 GZA 200 8888
10/13/202
5

200 GZA 200 8888
10/13/202
5

400 Raekwon 200 6666
10/13/202
5

500 RZA 500 7777
10/13/202
5

Output Buffer

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

29

Last Value: 200---100400500

Sort-Merge Join Cost (Best Case)

Sort Cost (R): 2M ∙ (1 + ⌈ logB-1 ⌈M / B⌉ ⌉)

Sort Cost (S): 2N ∙ (1 + ⌈ logB-1 ⌈N / B⌉ ⌉)

Merge Cost: (M + N)

Total Cost: Sort + Merge

30

Sort-Merge Join Cost (Best Case)

Example database:
→ Table R: M = 1000, m = 100,000
→ Table S: N = 500, n = 40,000

With B=100 buffer pages, both R and S can be
sorted in two passes:
→ Sort Cost (R) = 2000 ∙ (1 + ⌈log99 1000 /100⌉) = 4000 I/Os
→ Sort Cost (S) = 1000 ∙ (1 + ⌈ log99 500 / 100⌉) = 2000 I/Os
→ Merge Cost = (1000 + 500) = 1500 I/Os
→ Total Cost = 4000 + 2000 + 1500 = 7500 I/Os
→ At 0.1 ms/IO, Total time ≈ 0.75 seconds

31

Sort-Merge Join Cost (Worst Case)

The worst case for the merging phase is when the
join attribute of all the tuples in both relations
contains the same value.

Cost: (M ∙ N) + (sort cost)

32

When Is Sort-Merge Join Useful?

One or both tables are already sorted on join key.

Output must be sorted on join key.

The input relations may be sorted either by an
explicit sort operator, or by scanning the relation
using an index on the join key.

33

Observation

Sort-Merge Join pros and cons:
✓ Used block-based layout and
✓ Could take advantage of buffer pool
X Still suffered from indexing overhead
X Still suffered from excessive random I/O

Hash join tries to avoid these issues
✓ Make use of blocks/buffers
✓ Mostly sequential I/O
✓ Low indexing overhead

34

Hash Join

For 𝑟 ∈ 𝑅𝑖 and 𝑠 ∈ 𝑆𝑗, ℎ1 𝑟. 𝑖𝑑 ≠ ℎ1 𝑠. 𝑖𝑑 , so
we don't need to compare 𝑅𝑖 to 𝑆𝑗

35

R(id,name) S(id,value,cdate)

h1
⋮

𝑅1

𝑅2

𝑅3

𝑅𝑛

h1
⋮

𝑆1

𝑆2

𝑆3

𝑆𝑛

Idea: Hash tuples into n buckets based on join key (e.g., id)

Hash Join

For 𝑟 ∈ 𝑅𝑖 and 𝑠 ∈ 𝑆𝑖, ℎ1 𝑟. 𝑖𝑑 = ℎ1 𝑠. 𝑖𝑑 , so
either we had a hash collision, or 𝑟. 𝑖𝑑 = 𝑠. 𝑖𝑑

36

h1
⋮

R(id,name)

⋮

h1

S(id,value,cdate)

𝑅1

𝑅2

𝑅3

𝑅𝑛

𝑆1

𝑆2

𝑆3

𝑆𝑛

Idea: Hash tuples into n buckets based on join key (e.g., id)

Inspect for
matches

Simple Hash Join Algorithm

Phase #1: Build
→ Scan the outer relation and populate a hash table, HT ,

using the hash function h1 on the join attributes.
→ We can use any hash table that we discussed before but in

practice linear probing works the best.

Phase #2: Probe
→ Scan the inner relation and use h1 on each tuple to jump to

a location in the hash table and find a matching tuple.

For starters, assume HT fits in memory on B buffers

37

Simple Hash Join Algorithm

foreach tuple r ∈ R:
 insert h1(r) into hash table HTR
foreach tuple s ∈ S:
 output, if h1(s) ∈ HTR

h1
⋮

h1

R(id,name) S(id,value,cdate)

38

Hash Table
HTR

Hash Joins Of Large Relations

What happens if we do not have enough memory to fit
the entire hash table?

Buffer pool manager might swap out pages of HT at
random

Need a principled approach to minimize I/O in this case

39

Partitioned Hash Join

Hash join when tables do not fit in
memory.
→ Partition Phase: Hash both tables on the

join attribute into partitions.
→ Probe Phase: Compares tuples in

corresponding partitions for each table.

Sometimes called GRACE Hash Join.
→ Named after the GRACE database

machine from Japan in the 1980s.

 GRACE University of Tokyo

GRACE
University of Tokyo

40

https://en.wikipedia.org/wiki/Database_machine
https://en.wikipedia.org/wiki/Database_machine
http://museum.ipsj.or.jp/en/computer/other/0014.html
http://museum.ipsj.or.jp/en/computer/other/0014.html

Partitioned Hash Join (Partition Phase)

Hash R into B buckets.

Hash S into B buckets with same hash function.

Write buckets to disk when they get full.

h1
⋮

HTR

h1
⋮

HTS
0
1
2

B-1

R(id,name) S(id,value,cdate)

41

Partitioned Hash Join Probe Phase

Read corresponding partitions into memory one pair at a
time, use simple hash join on their contents.

But wait, 𝑅𝑖 might have many blocks, will it fit in memory?

h1
⋮

HTR

h1
⋮

HTS
0
1
2

B-1

R(id,name) S(id,value,cdate)

42

Partitioned Hash Join Edge Cases

Option 1: If a single join key has too many
matching records that do not fit in memory, use a
block nested loop join just for that key.
→ Avoids random I/O in exchange for sequential I/O.

Option 2: If a partition does not fit in memory,
recursively partition it with a different hash
function
→ Repeat as needed
→ Eventually hash join the corresponding (sub-)partitions

43

Recursive Partitioning

h1 h2

⋮

R(id,name) 0

1'

1''

1'''

B-1

h1

0

B-1

1 h2

S(id,value,cdate)

44

Cost Of Partitioned Hash Join

If we do not need recursive partitioning:
→ Cost: 3(M + N)

Partition phase:
→ Read+write both tables
→ 2(M+N) I/Os

Probe phase:
→ Read both tables (in total, one partition at a time)
→ M+N I/Os

45

Partitioned Hash Join

Example database:
→ M = 1000, m = 100,000
→ N = 500, n = 40,000

Cost Analysis:
→ 3(M + N) = 3 ∙(1000 + 500) = 4,500 IOs
→ At 0.1 ms/IO, Total time ≈ 0.45 seconds

46

Hash Join Observations

The inner table can be any size .
→ Only outer table (or its partitions) need to fit in memory

If we know the size of the outer table, then we
can use a static hash table.
→ Less computational overhead

If we do not know the size, then we must use a
dynamic hash table or allow for overflow pages.

47

Join Algorithms: Summary

Algorithm IO Cost Example

Naïve Nested Loop Join M + (m ∙ N) 1.3 hours

Block Nested Loop Join M + (M / (B-2) ∙ N) 0.55 seconds

Index Nested Loop Join M + (m ∙ C) >20 seconds

Sort-Merge Join M + N + (sort cost) 0.75 seconds

Hash Join 3 ∙ (M + N) 0.45 seconds

48

Conclusion

Hashing is almost always better than sorting for
operator execution.

Caveats:
→ Sorting is better on non-uniform data.
→ Sorting is better when result needs to be sorted.

Good DBMSs use many/all approaches when
needed

49

Next Class

Midterm Review

Come with questions!

50

R S

⨝

Optimization: Probe Filter

Create a probe filter (Bloom Filter)
as the DBMS builds the hash table
on the outer table in the first phase.
→ Always check the filter before probing

the hash table.
→ Faster than probing hash table because

the filter fits in CPU cache.

This technique is sometimes called
sideways information passing.

51

Bloom Filter

https://en.wikipedia.org/wiki/Bloom_filter

Optimization: Hybrid Hash Join

If the keys are skewed, then the DBMS keeps the
hot partition in-memory and immediately
perform the comparison instead of spilling it to
disk.
→ Difficult to get to work correctly. Rarely done in practice.

h1
⋮

h1
⋮

0
1
2

max

R(id,name) S(id,value,cdate)

52

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Last Week
	Slide 4: Course Progress Check-In
	Slide 5: Why Do We Need To Join?
	Slide 6: Join Algorithms
	Slide 7: Query Plan
	Slide 8: Join Operators
	Slide 9: Operator Output
	Slide 10: Operator Output: Tuple Data
	Slide 11: Operator Output: Record IDs
	Slide 12: What Algorithm to Use?
	Slide 13: Join Algorithms

	Nested Loop Join
	Slide 14: Naïve Nested Loop Join
	Slide 15: Naïve Nested Loop Join
	Slide 16: Naïve Nested Loop Join
	Slide 17: Naïve Nested Loop Join
	Slide 18: Block Nested Loop Join
	Slide 19: Block Nested Loop Join
	Slide 20: Block Nested Loop Join
	Slide 21: What About The Buffer Pool?
	Slide 22: Block Nested Loop Join
	Slide 23: Nested Loop Join
	Slide 24: Index Nested Loop Join
	Slide 25: Index Nested Loop Join
	Slide 26: Index Nested Loop Join
	Slide 27: Nested Loop Join Summary

	Sort-Merge Join
	Slide 28: Sort-Merge Join
	Slide 29: Sort-Merge Join
	Slide 30: Sort-Merge Join Cost (Best Case)
	Slide 31: Sort-Merge Join Cost (Best Case)
	Slide 32: Sort-Merge Join Cost (Worst Case)
	Slide 33: When Is Sort-Merge Join Useful?

	Hash Joins
	Slide 34: Observation
	Slide 35: Hash Join
	Slide 36: Hash Join
	Slide 37: Simple Hash Join Algorithm
	Slide 38: Simple Hash Join Algorithm
	Slide 39: Hash Joins Of Large Relations
	Slide 40: Partitioned Hash Join
	Slide 41: Partitioned Hash Join (Partition Phase)
	Slide 42: Partitioned Hash Join Probe Phase
	Slide 43: Partitioned Hash Join Edge Cases
	Slide 44: Recursive Partitioning
	Slide 45: Cost Of Partitioned Hash Join
	Slide 46: Partitioned Hash Join
	Slide 47: Hash Join Observations

	Conclusion
	Slide 48: Join Algorithms: Summary
	Slide 49: Conclusion
	Slide 50: Next Class

	OLD
	Slide 51: Optimization: Probe Filter
	Slide 52: Optimization: Hybrid Hash Join

