
COMP 421: Files & Databases

Lecture 13: Query Execution

1

Announcements

Midterm 1: Done grading, just a couple of make-
ups still in the pipeline.

Monday: we'll discuss/release exam grades, mid-
semester grades

Exam Solutions: we'll either release next week or
make available in office hours

2

Last Class

Operator Execution
• How to translate relational operators into

fast code
• Good news: one of the hard ones, sorting,

we've already done
• Today: the other hard one, joins

Goal: want fast, I/O efficient operators
to use when we get to query planning
and execution

3

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Query Plan

The operators are arranged in a tree.

Data flows from the leaves of the
tree up towards the root.
→ We will discuss the granularity of the

data movement next lecture.

The output of the root node is the
result of the query.

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




4

Today's Agenda

Processing Models

Access Methods

Modification Queries

Expression Evaluation

5

Processing Model

A DBMS's processing model defines how the
system executes a query plan and moves data
from one operator to the next.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types
of execution paths:
→ Control Flow: How the DBMS invokes an operator.
→ Data Flow: How an operator sends its results.

The output of an operator can be either whole
tuples (NSM) or subsets of columns (DSM).

6

Query Execution

A query plan is a DAG of operators.

Naïve idea: look for an operator
whose children are complete, run
this operator until done

Problem: what to do with
intermediate results?

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

7

Spill to disk!

Spill to disk!

Spill to disk!

Processing Model

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model

8

Most Common

Rare

Common

Iterator Model

Each query plan operator implements a Next()
function.
→ On each invocation, the operator returns either a single

tuple or a EOF marker if there are no more tuples.
→ The operator implements a loop that calls Next() on its

children to retrieve their tuples and then process them.

Each operator implementation also has Open()
and Close() functions.
→ Analogous to constructors/destructors, but for

operators.

Also called Volcano or Pipeline Model.

9

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Iterator Model
10

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4Single Tuple

Next()

Next()

Next() Next()

Next()

Control Flow
Data Flow

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Iterator Model
11

for t in R:
 emit(t)

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): emit(t1⨝t2)

for t in child.Next():
 emit(projection(t))

for t in child.Next():
 if evalPred(t): emit(t)

for t in S:
 emit(t)

1

2

3 5

4

Control Flow
Data Flow

Pipeline #1

Pipeline #2Blocking edge
(Pipeline Blocker)

Pipeline Edge

Iterator Model

The Iterator model is used in almost every DBMS.
→ Easy to implement / debug.
→ Output control works easily with this approach.

Benefits of pipelining
→ Within pipeline, never spill intermediate results to disk
→ Start returning results sooner
→ Secret reason #3: pipeline parallelism (next class)

12

Materialization Model

Each operator processes its input all at once and
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid

scanning too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or
subsets of columns (DSM).
→ Originally developed by MonetDB in the 1990s to

process entire columns at a time instead of single tuples.

13

Materialization Model
14

out = []
for t in R:
 out.add(t)
return out

out = []
for t1 in left.Output():
 buildHashTable(t1)
for t2 in right.Output():
 if probe(t2): out.add(t1⨝t2)
return out

out = []
for t in child.Output():
 out.add(projection(t))
return out

out = []
for t in child.Output():
 if evalPred(t): out.add(t)
return out

out = []
for t in S:
 out.add(t)
return out

1

2

3 5

4
All Tuples

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝



out = []
for t in S:
 if evalPred(t): out.add(t)
return out

Control Flow
Data Flow

Operator Fusion

Materialization Model

See your entire input set, pick the best algorithm

Better for OLTP workloads because queries only
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not ideal for OLAP queries with large
intermediate results, more optimizations needed

15

Vectorization Model

Like the Iterator Model where each operator
implements a Next() function, but…

Each operator emits a batch of tuples instead of a
single tuple.
→ The operator's internal loop processes multiple tuples at

a time.
→ The size of the batch can vary based on hardware or

query properties.
→ Each batch will contain one or more columns each their

own null bitmaps.

16

Vectorization Model
17

out = []
for t in R:
 out.add(t)
 if |out|>n: emit(out)

out = []
for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2): out.add(t1⨝t2)
 if |out|>n: emit(out)

out = []
for t in child.Next():
 out.add(projection(t))
 if |out|>n: emit(out)

out = []
for t in child.Next():
 if evalPred(t): out.add(t)
 if |out|>n: emit(out)

1

2

3
out = []
for t in S:
 out.add(t)
 if |out|>n: emit(out)

5

4

Tuple Batch

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control
FlowData Flow

Vectorization Model

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays,

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.

18

Observation

In the previous examples, the DBMS starts
executing a query by invoking Next() at the root
of the query plan and pulling data up from leaf
operators.

This is the how most DBMSs implement their
execution engine.

19

Plan Processing Direction

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using

function calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ "fuse" operators together within a for-loop to minimize

intermediate copies / function calls
→ Easier to orchestrate parallelism

20

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Push-based Iterator Model
21

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Scheduler

Operator Fusion

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Push-based Iterator Model
22

for t2 in S:
 if evalPred(t):
 if probeHashTable(t2):
 emit(projection(t1⨝t2))

2

for t1 in R:
 buildHashTable(t1)1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Scheduler

Plan Processing Direction

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a

tuple.
→ Additional overhead because operators' Next()

functions are implemented as virtual functions.
→ Branching costs on each Next() invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ May not have exact control of intermediate result sizes.
→ Difficult to implement some operators (Sort-Merge Join).

23

Most Common

Rare

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100

Access Methods

An access method is the way that
the DBMS accesses the data stored
in a table.
→ Not defined in relational algebra.

Three basic approaches:
→ Sequential Scan.
→ Index Scan (many variants).
→ Multi-Index Scan.

24

Sequential Scan

For each page in the table:
→ Retrieve it from the buffer pool

manager.
→ Iterate over each tuple and check

whether to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot
it examined.

for page in table.pages:
 for t in page.tuples:
 if evalPred(t):
 // Do Something!

25

Sequential Scan: Optimizations

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Code Specialization / Compilation

Data Parallelization / Vectorization

Task Parallelization / Multi-threading

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #5

26

Data Skipping

Approach #1: Approximate Queries (Lossy)
→ Execute queries on a sampled subset of the entire table

to produce approximate results.
→ Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle,

Snowflake, Google BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)
→ Pre-compute columnar aggregations per page that allow

the DBMS to check whether queries need to access it.
→ Trade-off between page size vs. filter efficacy.
→ Examples: Oracle, Vertica, SingleStore, Netezza,

Snowflake, Google BigQuery

27

http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

Zone Maps

Pre-computed aggregates for the attribute values
in a page. DBMS checks the zone map first to
decide whether it wants to access the page.

Zone Map

val

100

400

280

1400

type

MIN
MAX
AVG
SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
 WHERE val > 600

28

Index Scan

The DBMS picks an index to find the tuples that
the query needs.

Which index to use depends on:
→ What attributes the index contains
→ What attributes the query references
→ The attribute's value domains
→ Predicate composition
→ Whether the index has unique or non-unique keys

29

Index Scan

Suppose that we have a single table
with 100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

30

age<30

fetch records

dept='CS'
AND country='US'

fetch records

dept='CS'

Age<30
AND country='US'

Index Scan

Suppose that we have a single table
with 100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

There are 99 people
under the age of 30 but
only 2 people in the CS
department.

Scenario #1

There are 99 people in
the CS department but
only 2 people under the
age of 30.

Scenario #2

31

Multi-index Scan

If there are multiple indexes available for a query,
the DBMS does not have to pick only one:
→ Compute sets of Record IDs using each matching index.
→ Combine these sets based on the query’s predicates

(union vs. intersect).
→ Retrieve the records and apply any remaining predicates.

Examples:
→ DB2 Multi-Index Scan
→ PostgreSQL Bitmap Scan
→ MySQL Index Merge

32

https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

Multi-index Scan

Given the following query on a
database with an index #1 on age and
an index #2 on dept:
→ We can retrieve the Record IDs satisfying

age<30 using index #1.
→ Then retrieve the Record IDs satisfying

dept='CS' using index #2.
→ Take their intersection.
→ Retrieve records and check

country='US'.

33

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

Multi-index Scan

Set intersection can be done
efficiently with bitmaps or hash
tables.

age<30 dept='CS'

record ids record ids

country='US'fetch records

34

SELECT * FROM students
 WHERE age < 30
 AND dept = 'CS'
 AND country = 'US'

Modification Queries

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for modifying the
target table and its indexes.
→ Constraint checks can either happen immediately inside

of operator or deferred until later in query/transaction.

The output of these operators can either be
Record IDs or tuple data (i.e., RETURNING).

35

Modification Queries

UPDATE/DELETE:
→ Child operators pass Record IDs for target tuples.
→ Must keep track of previously seen tuples.

INSERT:
→ Choice #1: Materialize tuples inside of the operator.
→ Choice #2: Operator inserts any tuple passed in from

child operators.

36

SELECT R.id, S.cdate
 FROM R JOIN S
 ON R.id = S.id
 WHERE S.value > 100;

Expression Evaluation

The DBMS represents a WHERE clause
as an expression tree.

The nodes in the tree represent
different expression types:
→ Comparisons (=, <, >, !=)
→ Conjunction (AND), Disjunction (OR)
→ Arithmetic Operators (+, -, *, /, %)
→ Constant Values
→ Tuple Attribute References
→ Functions Attribute(S.id)

=

Attribute(R.id)

AND

>

Attribute(value) Constant(100)

37

1000

991 9

true

1000

Execution Context

Expression Evaluation

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)

38

Expression Evaluation

PREPARE xxx AS
 SELECT * FROM S
 WHERE S.val = $1 + 9

EXECUTE xxx(991)

39

Is this a good idea?

Several Function calls (possible virtual)
Several pointer chases (depth-first traversal)
Dealing with schema / types / exec_ctx
Repeated work for every tuple

Fundamentally, what
did we want to do?

cmp_eq $r1 $r2
je compare_true;
jmp compare_false;

Attribute(S.id)

=

Attribute(R.id)

We wanted ~2 instructions,
we got hundreds or more!

Expression / Query Compilation

Evaluating predicates by traversing a
tree is terrible for the CPU.
→ The DBMS traverses the tree and for

each node that it visits, it must figure
out what the operator needs to do.

A better approach is to evaluate the
expression directly.

An even better approach is to
vectorize it evaluate a batch of
tuples at the same time…

Constant(1)

=

Attribute(s.val)

bool check(val) {
 return (val == 1);
}

Machine Code

gcc, Clang, LLVM, …

40

SELECT * WHERE s.val = 1;

CONCLUSION

The same query plan can be executed in multiple
different ways.

(Most) DBMSs will want to use index scans as
much as possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.

41

NEXT CLASS

Parallel Query Execution

42

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Last Class
	Slide 4: Query Plan
	Slide 5: Today's Agenda

	Processing Models
	Slide 6: Processing Model
	Slide 7: Query Execution
	Slide 8: Processing Model
	Slide 9: Iterator Model
	Slide 10: Iterator Model
	Slide 11: Iterator Model
	Slide 12: Iterator Model
	Slide 13: Materialization Model
	Slide 14: Materialization Model
	Slide 15: Materialization Model
	Slide 16: Vectorization Model
	Slide 17: Vectorization Model
	Slide 18: Vectorization Model

	Push vs Pull
	Slide 19: Observation
	Slide 20: Plan Processing Direction
	Slide 21: Push-based Iterator Model
	Slide 22: Push-based Iterator Model
	Slide 23: Plan Processing Direction

	Access Methods
	Slide 24: Access Methods
	Slide 25: Sequential Scan
	Slide 26: Sequential Scan: Optimizations
	Slide 27: Data Skipping
	Slide 28: Zone Maps
	Slide 29: Index Scan
	Slide 30: Index Scan
	Slide 31: Index Scan
	Slide 32: Multi-index Scan
	Slide 33: Multi-index Scan
	Slide 34: Multi-index Scan

	Modifications
	Slide 35: Modification Queries
	Slide 36: Modification Queries

	Expression Evaluation
	Slide 37: Expression Evaluation
	Slide 38: Expression Evaluation
	Slide 39: Expression Evaluation
	Slide 40: Expression / Query Compilation

	Conclusion
	Slide 41: CONCLUSION
	Slide 42: NEXT CLASS

