COMP 421: Files & Databases

Lecture 13: Query Execution
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Announcements

Midterm 1: Done grading, just a couple of make-
ups still in the pipeline.

Monday: we'll discuss/release exam grades, mid-
semester grades

Exam Solutions: we'll either release next week or
make available in office hours
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Last Class 3

Operator Execution
* How to translate relational operators into

fast code :
* Good news: one of the hard ones, sorting, Query Planning

we've already done ‘ ; |
* Today: the other hard one, joins Operator Execution

Access Methods

Goal: want fast, 1/O efficient operators
to use when we get to query planning

and execution Disk Manager

Buffer Pool Manager




Query Plan 4

The operators are arranged in a tree. A O R Ag, . Eeette
FROM R JOIN S

ON R.id = S.id
Data flows from the leaves of the WHERE S.value > 100

tree up towards the root.

— We will discuss the granularity of the t
data movement next lecture. TC R.id, S.cdate
t
The output of the root node is the NR-id=5-id

result of the query.

\
G value>100
g




Today's Agenda 5

Processing Models
Access Methods
Modification Queries
Expression Evaluation

COMPUTER SCIENCE



Processing Model 6

A DBMS's processing model defines how the
system executes a query plan and moves data

from one operator to the next.
— Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types

of execution paths:

— Control Flow: How the DBMS invokes an operator.
— Data Flow: How an operator sends its results.

The output of an operator can be either whole
tuples (NSM) or subsets of columns (DSM).



Query Execution 7

' SELECT R.id, S.cdat
A query plan is a DAG of operators. FROM R }OIN (o0 e

ON R.id = S.id
WHERE S.value > 100

Naive idea: look for an operator :
whose children are complete, run [ Spill tOQ

this operator until done + | spilltodisk

[ Spill to disk!
Problem: what to do with

intermediate results? /

\
0]

value>100

Wn-




Processing Model 8

Approach #1: Iterator Model 4@ Most Common
Approach #2: Materialization Model « Rare

Approach #3: Vectorized / Batch Model « Common
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Iterator Model 9

Each query plan operator implements a Next()

function.

— On each invocation, the operator returns either a single
tuple or a EOF marker if there are no more tuples.

— The operator implements a loop that calls Next() on its
children to retrieve their tuples and then process them.

Each operator implementation also has Open()

and Close() functions.
— Analogous to constructors/destructors, but for

operators.

™ UNC Also called Volcano or Pipeline Model.



Iterator Model

Control F;ow —
D Fi — .
ararow==y for t in child.Next(): SELECT R.id, S.cdate
emi t(projdctiongt)) v FROM R JOIN S

WHERE S.value > 100

N for t, ja=left.Next(): :
byt1dHashTable(t ) . =
f F in r1ght . — e | T 1

/

- t() for t in child.Next():
Single Tuple if evalPr{d(t): mit({)

S g X
for t in R: Next() |for t in §:
emit(t)=— emit(t

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

\ \ .................. ON R.id = S.id




Iterator Model

Control F;OW—’ .................................................................
D i 1
ata Fow— {|for t in child.Next(): 22030 ol SoEeEll:
emit(projectiongt)) FROM R JOIN S
..... S W ON R.id = S.id

[ for t, in left.Next() Y WHERE S.value > 100

:|__buildHashTable(t) [ :
:for t, in right.Nex
i if probe(t,): emjt(t X<

Pipeline Edge

Blocking edge
(Pipeline Blocker)

...............................................................

i for t in child.Next():
i if evalPred(t):

:fortiI{R: gfortinj: '
emit(t) | P emit(t

Plpelme #1



Iterator Model

The Iterator model is used in almost every DBMS.
— Easy to implement / debug.
— Output control works easily with this approach.

Benefits of pipelining

— Within pipeline, never spill intermediate results to disk
— Start returning results sooner

— Secret reason #3: pipeline parallelism (next class)

<EEROSPIKE— RAQ)‘ENDB E HyPer
g yugabyteDB WSQL'IIZE .mongoDB .mangoDB INGR=S
D)
fauna #§0lserver MOSYBASE ~ WrostesQL  ORACLE  D\MysaL. % NUO

as CouchDB
: w/%% cassandra




Materialization Model

Each operator processes its input all at once and

then emits its output all at once.

— The operator "materializes" its output as a single result.
— The DBMS can push down hints (e.g., LIMIT) to avoid
scanning too many tuples.

— Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or

subsets of columns (DSM).
— Originally developed by MonetDB in the 1990s to
process entire columns at a time instead of single tuples.



Materialization Model

Control Flow —» -
Data Flow —» out = [ ] o SELECT R.1id, S.cdate
for t in child.Output():
o< out .add(projectipn(t)) FR(())E I; :.Kd)IN 2
TETUT Ot~ .id = S.1i
X/ WHERE S.value > 100
out = [ ]
for t, in left.Output():
bui ldHashTable(f. 1
=for t, in right futgut(): :
q_if probe(t, )/ out fadd(t, > TCR‘ld’ 5. cdate
return ou 1
; oooooo ’ooo\ ooooooooooooooooooooooooooooooooo .. R.j_d:S.id
tjout = [ ] : N

( for t in S:

N, if evalPred(y): out.add(t)
L All Tuples l return out

. R |
out = [ ] perator

for t in R: for t in S:

out.add(t) : out .add(
return out — return out




Materialization Model

See your entire input set, pick the best algorithm

Better for OLTP workloads because queries only

access a small number of tuples at a time.
— Lower execution / coordination overhead.
— Fewer function calls.

Not ideal for OLAP queries with large
intermediate results, more optimizations needed

ma@ =l CrateDB RA%NDB

m|uNc [i-Store VOLTDB

V

VanillaDB

HYRISE
(X




Vectorization Model

Like the Iterator Model where each operator
implements a Next () function, but...

Each operator emits a batch of tuples instead of a
single tuple.
— The operator's internal loop processes multiple tuples at

a time.
— The size of the batch can vary based on hardware or

guery properties.
— Each batch will contain one or more columns each their

own null bitmaps.
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Vectorization Model

Control —»

Data Figy—> out = [ ] SELECT R.id, S.cdate
<-for t in child.Next():

out.add(projection(t)) FROM R :,IOIN > .
TITTOUR 7 emit(out) ON R.id = S.id
WHERE S.value > 100

R |
out = [ ]
rfor t, in left.Next(): 1

buildHashTable )

for t, in right.Next(): R.id. S.cdat
if probe(t,): add(t,PX,) TC 2SR
if |out|>n: em]t(dyt) 1

A NR.id=S.id
ogt = [ ]
-for t in child.NextON \
C_ if evalPred(t)# out.¥dd(t) Gvalue>100
(out)

W
A

}

X
out = [ ] Tuple Batch out = [ ] R s
for t in R: for t in S:
out.add(t) out.add(t)
if |out|>n: emit(out) if |out|>n: emit(out)




Vectorization Model

Ideal for OLAP queries because it greatly reduces
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute

operators over batches of tuples.

— Operators perform work in tight for-loops over arrays,
which compilers know how to optimize / vectorize.

— No data or control dependencies.

— Hot instruction cache.
(3 QuestDB

o Google jihn . . CA
presto .. Big Query  Yellowbrick €y ‘? pan' OSII‘Iq|E5tDI'E VERTI ‘EE:IFEL -g

CockroachDB

50 server “* vectorwise @AlloyDB |l ClickHouse  @®= DuckDB @VG|OX
DATA.
=gy ORACLE ;:orssnowfloke . Ragg?ﬁg!‘r < databricks FUSDKZN H%I‘(@EEE g trino




Observation

In the previous examples, the DBMS starts
executing a query by invoking Next () at the root
of the query plan and pulling data up from leaf

operators.

This is the how most DBMSs implement their
execution engine.



Plan Processing Direction

Approach #1: Top-to-Bottom (Pull)

— Start with the root and "pull" data up from its children.

— Tuples are always passed between operators using
function calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)

— Start with leaf nodes and "push" data to their parents.

— "fuse" operators together within a for-loop to minimize
intermediate copies / function calls

— Easier to orchestrate parallelism

s¥zsnowfloke () DuckDB AHyPer



Push-based Iterator Model

Control Flow =
Data Flow ——»

_.0
_.g

Scheduler

for t, in R:
buildHashTable(t;)

for t, in S:
if evalPred(t):
if probeHashTable(t,):
emit(projection(t;P<t,))

Operatolr Fusion

SELECT R.1id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

............ P lpellne #1
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Plan Processing Direction

Approach #1: Top-to-Bottom (Pull) « Most Common
— Easy to control output via LIMIT.
— Parent operator blocks until its child returns with a
tuple.
— Additional overhead because operators' Next()
functions are implemented as virtual functions.
— Branching costs on each Next() invocation.

Approach #2: Bottom-to-Top (Push) « Rare

— Allows for tighter control of caches/registers in pipelines.
— May not have exact control of intermediate result sizes.
— Difficult to implement some operators (Sort-Merge Join).



Access Methods

An access method is the way that
the DBMS accesses the data stored

in a table.
— Not defined in relational algebra.

Three basic approaches:
— Sequential Scan.

— Index Scan (many variants).
— Multi-Index Scan.

SELECT R.1d, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100




Sequential Scan

: for page in table.pages:
For each page in the table: fofz % in page.tuglgs:
— Retrieve it from the buffer pool if evalPred(t):
Manager. // Do Something!

— |terate over each tuple and check
whether to include it.

The DBMS maintains an internal
cursor that tracks the last page / slot
it examined.

ENT OF
COMPUTER SCIENCE
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Sequential Scan: Optimizations

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass
Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Code Specialization / Compilation

Data Parallelization / Vectorization
Task Parallelization / Multi-threading

DEPARTMENT OF
COMPUTER SCIENCE



Data Skipping

Approach #1: Approximate Queries (Lossy)

— Execute queries on a sampled subset of the entire table
to produce approximate results.

— Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle,
Snowflake, Google BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)

— Pre-compute columnar aggregations per page that allow
the DBMS to check whether queries need to access it.

— Trade-off between page size vs. filter efficacy.

— Examples: Oracle, Vertica, SingleStore, Netezza,
Snowflake, Google BigQuery


http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/

Small Materialized Aggregates:
A Light Weight Index Structure for Data Warehousing

Guido Moerkotte
mﬂer@pi(!.informat.ik.uni-mannheim.de

Pre-computed aggregates fo e e
in a page. DBMS checks the — el 1t s

a good idea to Materialize According views, The most.
Popular of these approaches is the materialized dats

] O a Smal} Materialized Aggregates (SMAs for cube where for 5 set of dimensiuns, for all theiy POssi-
. W a n S short) are considered 5 highly flexible and ver- ble grouping combinations, the Aggregates of interest,
I c I d e W e e satile alternative for Materialized data cybes, are materialized, Then,

query Processing against 5

The basic idea is to compute many aggregate data cube boils down to a very eflicient lookup. Since
values for small 1o medivm-sized buckets of ty- the complete data cube is very space consuming (5, 18),
ples. These Aggregates are thep used to speed strategies have hpen developed for materializing only
up query processing. We present the general those parts of » data cube that Pay off ot iy query
idea and pregent an application of SMAs to processing [10). Another approach-based op [14}-is to
o o I D ata the TPCD benchmrl We show that ex. hierarchically organize the aggregates 12]. But sty
O r lg ’ n a ploiting SMAs for TPC.D Query 1 reslts in the storage consumption can he very high, even for 5
a speed up of two orders of magiitude, Then, simple grouping bossibility, if the number of dimey.
We investigate the problem of QUEry process- sions and/or their cardinality grows, On the user side,
ing in the Ppresence of SMAs, Last, we briefly the data cube operator has been Proposed to allow for
discuss some further tuning possibilities for easier query formulation (8] But since we deal with
V a 1 SMAs, performance here, we wij] throughout the rest of the
Ppaper use the term data cube to refer to 4 Taterialized
1 Intro ducti on data cube used to speed up query Processing,
. Besides high storage consumption, the biggesy dis-
M 't a b 1 e 1 0 @ Amang the predominap, demands put on dat vape. advantage of the data cube gy e iuﬁrxibili?inach
ECT * house management Systems (I WMSs) is performance, data cube implies 4 fieq nummber of queries that can
2 0@ L€, the highly efficient evaluation of complex anafyt- be answered wigl, it. As soon as for example an aq.

jcal querics. ‘A fery succ&{u] ineans "B speed up ditional selection condition occyrs in the query, the
WHE RE Va ]. > puery processing is the exploitation of indey struc- e cube might not he applicable any more, Further-

3 0 @ data warehouse management systems (for an overyiew

. nary space consumpﬁun‘maybc the reason why, to
4 @ O T — the knowledge of the author, data cubes have never

Permission to copy withant foe it o Part of this materiaf is i a

o, rent arovided that the capics are ot et distributed for hm; e.i?rflc’eg “l’;he(s;“s:::fi d‘;‘: i !

/// fimect commercial aduantage, the g COpyright notice ang  Mmarl D 8L (et Section 2.4 for spaee require-

// O the HUE of the pulication gy \s dale appear, and noticy g5 ments of a data cube applied 1o TPC-D data) Our goal

V 4 given that copying 15 by permission of the Very Large Data fage Was to design an index Structure that allows for effi.
downnient. 1o copy utheruise, g gy republish, reguires o fop

andfon { permmission fron the Endonment cient supporg of complex qQueries against, high volumes
Proceedings of the 24th VLDR Conference of data as exemplified by the TPC-D benchmark,
New York, Uga. 1998 The main problem encountered is that some ueries
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Index Scan

The DBMS picks an index to find the tuples that
the query needs.

Which index to use depends on:
— What attributes the index contains
— What attributes the query references

— The attribute's value domains
— Predicate composition
— Whether the index has unique or non-unique keys

COMPUTER SCIENCE



Index Scan

Suppose that we have a single table

with 100 tuples and two indexes:
— Index #1: age
— Index #2: dept

AN

age<30
\\‘ﬁ>

fetch records

dept="CS'
| UNC AND country='US'

COMPUTER SCIENCE

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

AN

dept="CS'

fetch records

Age<30
AND country="'US'



Index Scan

Suppose that we have a single table

with 100 tuples and two indexes:
— Index #1: age
— Index #2: dept

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

Scenario #1 Scenario #2

There are 99 people There are 99 people in
under the age of 30 but the CS department but
only 2 people in the CS only 2 people under the
department. age of 30.

COMPUTER SCIENCE




Multi-index Scan

If there are multiple indexes available for a query,

the DBMS does not have to pick only one:

— Compute sets of Record IDs using each matching index.

— Combine these sets based on the query’s predicates
(union vs. intersect).

— Retrieve the records and apply any remaining predicates.

Examples:

— DB2 Multi-Index Scan
— PostgreSQL Bitmap Scan
— MySQL Index Merge

COMPUTER SCIENCE


https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html

Multi-index Scan

Given the following query on a
database with an index #1 on age and
an index #2 on dept:

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'

— We can retrieve the Record IDs satisfying
age<30 using index #1.

— Then retrieve the Record IDs satisfying
dept="CS' using index #2.

— Take their intersection.

— Retrieve records and check
country="US".

COMPUTER SCIENCE




Multi-index Scan

Set intersection can be done
efficiently with bitmaps or hash
tables.

age<30 dept="'CS'

record ids record ids

fetch records country="US'

COMPUTER SCIENCE

SELECT * FROM students
WHERE age < 30

AND dept = 'CS'

AND country = 'US'




COMPUTER SCIENCE

Modification Queries

Operators that modify the database (INSERT,
UPDATE, DELETE) are responsible for modifying the

target table and its indexes.
— Constraint checks can either happen immediately inside
of operator or deferred until later in query/transaction.

The output of these operators can either be
Record IDs or tuple data (i.e., RETURNING).



Modification Queries

UPDATE/DELETE:

— Child operators pass Record IDs for target tuples.
— Must keep track of previously seen tuples.

INSERT:

— Choice #1: Materialize tuples inside of the operator.
— Choice #2: Operator inserts any tuple passed in from
child operators.

COMPUTER SCIENCE



Expression Evaluation

SELECT R.id, S.cdate
The DBMS reE)resents a WHERE clause FROM R JOIN S
as an expression tree. ONR.id = S.id
WHERE S.value > 100;

The nodes in the tree represent
different expression types:

— Comparisons (=, <, >, 1=) AND
— Conjunction (AND), Disjunction (OR)
— Arithmetic Operators (+, -, *, /, %) / \

— Constant Values
— Tuple Attribute References / \ / \

— Functions Attribute(R. id) Attribute(S.id) | | Attribute(value)| | Constant(100)

COMPUTER SCIENCE



Expression Evaluation

PREPARE xxx AS .
SELECT * FROM S Execution Context

WHERE S : Va]‘ - $1 L 9 Current Tuple Query Parameters Table Schema

(123, 1000) (int:991) S»(int:id, int:val)
EXECUTE xxx(991)

N
— true ~—

Attribute(S.val) +
1000 / 1@@@\
Parameter($1) Constant(9)
991 9

COMPUTER SCIENCE



Expression Evaluation

PREPARE xxx AS
SELECT * FROM S
WHERE S.val = $1 +9

EXECUTE xxx(991)

Is this a good idea?

AN

Attribute(R.id) Attribute(S.id)

Several Function calls (possible virtual)
Several pointer chases (depth-first traversal)
Dealing with schema / types / exec_ctx
Repeated work for every tuple

Fundamentally, what
did we want to do?

cmp_eq $r1 $r2
je compare_true;
jmp compare_false;

We wanted ~2 instructions,
we got hundreds or more!



Expression / Query Compilation

SELECT * WHERE s.val = 1;

Evaluating predicates by traversing a

tree is terrible for the CPU. =
— The DBMS traverses the tree and for / \
each node that it visits, it must figure Attribute(s.val) Constant(1)
out what the operator needs to do. ‘
A better approach is to evaluate the bool check(val) {
expression directly. return (val == 1);
. }
An even better approach is to
vectorize it evaluate a batch of gcc' Clang, LLVM, .
tuples at the same time... a Vachine Code

i | UNC

— DEPARTMENT OF
COMPUTER SCI



CONCLUSION

The same query plan can be executed in multiple
different ways.

(Most) DBMSs will want to use index scans as
much as possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.



NEXT CLASS

Parallel Query Execution

COMPUTER SCIENCE
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