
COMP 421: Files & Databases

Lecture 13: Query Execution
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Announcements

Midterm 1: Done grading, just a couple of make-
ups still in the pipeline.

Monday: we'll discuss/release exam grades, mid-
semester grades

Exam Solutions: we'll either release next week or 
make available in office hours
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Last Class

Operator Execution
• How to translate relational operators into 

fast code
• Good news: one of the hard ones, sorting, 

we've already done
• Today: the other hard one, joins

Goal: want fast, I/O efficient operators 
to use when we get to query planning 
and execution
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Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager



Query Plan

The operators are arranged in a tree.

Data flows from the leaves of the 
tree up towards the root.
→ We will discuss the granularity of the 

data movement next lecture.

The output of the root node is the 
result of the query.

SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝



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Today's Agenda

Processing Models

Access Methods

Modification Queries

Expression Evaluation
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Processing Model

A DBMS's processing model defines how the 
system executes a query plan and moves data 
from one operator to the next.
→ Different trade-offs for workloads (OLTP vs. OLAP).

Each processing model is comprised of two types 
of execution paths:
→ Control Flow: How the DBMS invokes an operator.
→ Data Flow: How an operator sends its results.

The output of an operator can be either whole 
tuples (NSM) or subsets of columns (DSM).
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Query Execution

A query plan is a DAG of operators.

Naïve idea: look for an operator 
whose children are complete, run 
this operator until done

Problem: what to do with 
intermediate results?

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100
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Spill to disk!

Spill to disk!

Spill to disk!



Processing Model

Approach #1: Iterator Model

Approach #2: Materialization Model

Approach #3: Vectorized / Batch Model
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Most Common

Rare

Common



Iterator Model

Each query plan operator implements a Next() 
function.
→ On each invocation, the operator returns either a single 

tuple or a EOF marker if there are no more tuples.
→ The operator implements a loop that calls Next() on its 

children to retrieve their tuples and then process them.

Each operator implementation also has Open() 
and Close() functions.
→ Analogous to constructors/destructors, but for 

operators.

Also called Volcano or Pipeline Model.
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R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

Iterator Model
10

for t in R:
  emit(t)

for t1 in left.Next():
  buildHashTable(t1)
for t2 in right.Next():
  if probe(t2): emit(t1⨝t2)

for t in child.Next():
  emit(projection(t))

for t in child.Next():
  if evalPred(t): emit(t)

for t in S:
  emit(t)

1

2

3 5

4Single Tuple

Next()

Next()

Next() Next()

Next()

Control Flow
Data Flow



R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

Iterator Model
11

for t in R:
  emit(t)

for t1 in left.Next():
  buildHashTable(t1)
for t2 in right.Next():
  if probe(t2): emit(t1⨝t2)

for t in child.Next():
  emit(projection(t))

for t in child.Next():
  if evalPred(t): emit(t)

for t in S:
  emit(t)

1

2

3 5

4

Control Flow
Data Flow

Pipeline #1

Pipeline #2Blocking edge
(Pipeline Blocker)

Pipeline Edge



Iterator Model

The Iterator model is used in almost every DBMS. 
→ Easy to implement / debug.
→ Output control works easily with this approach.

Benefits of pipelining
→ Within pipeline, never spill intermediate results to disk
→ Start returning results sooner
→ Secret reason #3: pipeline parallelism (next class)
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Materialization Model

Each operator processes its input all at once and 
then emits its output all at once.
→ The operator "materializes" its output as a single result.
→ The DBMS can push down hints (e.g., LIMIT) to avoid 

scanning too many tuples.
→ Can send either a materialized row or a single column.

The output can be either whole tuples (NSM) or 
subsets of columns (DSM).
→ Originally developed by MonetDB in the 1990s to 

process entire columns at a time instead of single tuples.
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Materialization Model
14

out = [ ]
for t in R:
  out.add(t)
return out

out = [ ]
for t1 in left.Output():
  buildHashTable(t1)
for t2 in right.Output():
  if probe(t2): out.add(t1⨝t2)
return out

out = [ ]
for t in child.Output():
  out.add(projection(t))
return out

out = [ ]
for t in child.Output():
  if evalPred(t): out.add(t)
return out

out = [ ]
for t in S:
  out.add(t)
return out

1

2

3 5

4
All Tuples

SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝



out = [ ]
for t in S:
  if evalPred(t): out.add(t)
return out

Control Flow
Data Flow

Operator Fusion



Materialization Model

See your entire input set, pick the best algorithm

Better for OLTP workloads because queries only 
access a small number of tuples at a time.
→ Lower execution / coordination overhead.
→ Fewer function calls.

Not ideal for OLAP queries with large 
intermediate results, more optimizations needed
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Vectorization Model

Like the Iterator Model where each operator 
implements a Next() function, but…

Each operator emits a batch of tuples instead of a 
single tuple.
→ The operator's internal loop processes multiple tuples at 

a time.
→ The size of the batch can vary based on hardware or 

query properties.
→ Each batch will contain one or more columns each their 

own null bitmaps.
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Vectorization Model
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out = [ ]
for t in R:
  out.add(t)
  if |out|>n: emit(out)

out = [ ]
for t1 in left.Next():
  buildHashTable(t1)
for t2 in right.Next():
  if probe(t2): out.add(t1⨝t2)
  if |out|>n: emit(out)

out = [ ]
for t in child.Next():
  out.add(projection(t))
  if |out|>n: emit(out)

out = [ ]
for t in child.Next():
  if evalPred(t): out.add(t)
  if |out|>n: emit(out)

1

2

3
out = [ ]
for t in S:
  out.add(t)
  if |out|>n: emit(out)

5

4

Tuple Batch

SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control 
FlowData Flow



Vectorization Model

Ideal for OLAP queries because it greatly reduces 
the number of invocations per operator.

Allows an out-of-order CPU to efficiently execute 
operators over batches of tuples.
→ Operators perform work in tight for-loops over arrays, 

which compilers know how to optimize / vectorize.
→ No data or control dependencies.
→ Hot instruction cache.
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Observation

In the previous examples, the DBMS starts 
executing a query by invoking Next() at the root 
of the query plan and pulling data up from leaf 
operators.

This is the how most DBMSs implement their 
execution engine.
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Plan Processing Direction

Approach #1: Top-to-Bottom (Pull)
→ Start with the root and "pull" data up from its children.
→ Tuples are always passed between operators using 

function calls (unless it's a pipeline breaker).

Approach #2: Bottom-to-Top (Push)
→ Start with leaf nodes and "push" data to their parents.
→ "fuse" operators together within a for-loop to minimize 

intermediate copies / function calls
→ Easier to orchestrate parallelism
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SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

Push-based Iterator Model
21

for t2 in S:
  if evalPred(t):
    if probeHashTable(t2):
      emit(projection(t1⨝t2))

2

for t1 in R:
  buildHashTable(t1)1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Scheduler

Operator Fusion



SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

Push-based Iterator Model
22

for t2 in S:
  if evalPred(t):
    if probeHashTable(t2):
      emit(projection(t1⨝t2))

2

for t1 in R:
  buildHashTable(t1)1

Pipeline #1

Pipeline #2

R S

R.id=S.id

value>100

R.id, S.cdate

⨝




Control Flow
Data Flow

Scheduler



Plan Processing Direction

Approach #1: Top-to-Bottom (Pull)
→ Easy to control output via LIMIT.
→ Parent operator blocks until its child returns with a 

tuple.
→ Additional overhead because operators' Next() 

functions are implemented as virtual functions.
→ Branching costs on each Next() invocation.

Approach #2: Bottom-to-Top (Push)
→ Allows for tighter control of caches/registers in pipelines.
→ May not have exact control of intermediate result sizes.
→ Difficult to implement some operators (Sort-Merge Join).
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Most Common

Rare



R S

R.id=S.id

value>100

R.id, S.cdate

⨝




SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100

Access Methods

An access method is the way that 
the DBMS accesses the data stored 
in a table.
→ Not defined in relational algebra.

Three basic approaches:
→ Sequential Scan.
→ Index Scan (many variants).
→ Multi-Index Scan.
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Sequential Scan

For each page in the table:
→ Retrieve it from the buffer pool 

manager.
→ Iterate over each tuple and check 

whether to include it.

The DBMS maintains an internal 
cursor that tracks the last page / slot 
it examined.

for page in table.pages:
  for t in page.tuples:
    if evalPred(t):
      // Do Something!
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Sequential Scan: Optimizations

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Code Specialization / Compilation

Data Parallelization / Vectorization

Task Parallelization / Multi-threading

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #5
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Data Skipping

Approach #1: Approximate Queries (Lossy)
→ Execute queries on a sampled subset of the entire table 

to produce approximate results.
→ Examples: BlinkDB, Redshift, ComputeDB, XDB, Oracle, 

Snowflake, Google BigQuery, DataBricks

Approach #2: Zone Maps (Lossless)
→ Pre-compute columnar aggregations per page that allow 

the DBMS to check whether queries need to access it.
→ Trade-off between page size vs. filter efficacy. 
→ Examples: Oracle, Vertica, SingleStore, Netezza, 

Snowflake, Google BigQuery
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http://blinkdb.org/
https://docs.aws.amazon.com/redshift/latest/dg/r_COUNT.html
https://tibco-computedb.readthedocs.io/
https://initialdlab.github.io/XDB/
https://oracle-base.com/articles/12c/approximate-query-processing-12cr2
https://docs.snowflake.com/en/user-guide/querying-approximate-frequent-values.html
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://cloud.google.com/bigquery/docs/reference/standard-sql/approximate_aggregate_functions
https://docs.databricks.com/sql/language-manual/functions/approx_count_distinct.html
https://docs.oracle.com/database/121/DWHSG/zone_maps.htm
http://www.dbms2.com/2006/09/20/netezza-vs-conventional-data-warehousing-rdbms/


Zone Maps

Pre-computed aggregates for the attribute values 
in a page. DBMS checks the zone map first to 
decide whether it wants to access the page.

Zone Map

val

100

400

280

1400

type

MIN
MAX
AVG
SUM

5COUNT

Original Data

val

100

200

300

400

400

SELECT * FROM table
 WHERE val > 600
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Index Scan

The DBMS picks an index to find the tuples that 
the query needs.

Which index to use depends on:
→ What attributes the index contains
→ What attributes the query references
→ The attribute's value domains
→ Predicate composition
→ Whether the index has unique or non-unique keys
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Index Scan

Suppose that we have a single table 
with 100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

SELECT * FROM students 
 WHERE age < 30
   AND dept = 'CS'
   AND country = 'US'

30

age<30

fetch records

dept='CS'
AND country='US'

fetch records

dept='CS'

Age<30
AND country='US'



Index Scan

Suppose that we have a single table 
with 100 tuples and two indexes:
→ Index #1: age
→ Index #2: dept

SELECT * FROM students 
 WHERE age < 30
   AND dept = 'CS'
   AND country = 'US'

There are 99 people 
under the age of 30 but 
only 2 people in the CS 
department. 

Scenario #1

There are 99 people in 
the CS department but 
only 2 people under the 
age of 30.

Scenario #2
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Multi-index Scan

If there are multiple indexes available for a query, 
the DBMS does not have to pick only one:
→ Compute sets of Record IDs using each matching index.
→ Combine these sets based on the query’s predicates 

(union vs. intersect).
→ Retrieve the records and apply any remaining predicates.

Examples:
→ DB2 Multi-Index Scan
→ PostgreSQL Bitmap Scan
→ MySQL Index Merge
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https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.ibm.com/docs/en/dspafz/5.1.0?topic=report-multiple-index-scans
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/index-merge-optimization.html


Multi-index Scan

Given the following query on a 
database with an index #1 on age and 
an index #2 on dept:
→ We can retrieve the Record IDs satisfying 

age<30 using index #1.
→ Then retrieve the Record IDs satisfying 

dept='CS' using index #2. 
→ Take their intersection.
→ Retrieve records and check 

country='US'. 
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SELECT * FROM students 
 WHERE age < 30
   AND dept = 'CS'
   AND country = 'US'



Multi-index Scan

Set intersection can be done 
efficiently with bitmaps or hash 
tables.

age<30 dept='CS'

record ids record ids

country='US'fetch records
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SELECT * FROM students 
 WHERE age < 30
   AND dept = 'CS'
   AND country = 'US'



Modification Queries

Operators that modify the database (INSERT, 
UPDATE, DELETE) are responsible for modifying the 
target table and its indexes.
→ Constraint checks can either happen immediately inside 

of operator or deferred until later in query/transaction.

The output of these operators can either be 
Record IDs or tuple data (i.e., RETURNING).
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Modification Queries

UPDATE/DELETE:
→ Child operators pass Record IDs for target tuples.
→ Must keep track of previously seen tuples.

INSERT:
→ Choice #1: Materialize tuples inside of the operator.
→ Choice #2: Operator inserts any tuple passed in from 

child operators.
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SELECT R.id, S.cdate
  FROM R JOIN S
    ON R.id = S.id
 WHERE S.value > 100;

Expression Evaluation

The DBMS represents a WHERE clause 
as an expression tree.

The nodes in the tree represent 
different expression types:
→ Comparisons (=, <, >, !=)
→ Conjunction (AND), Disjunction (OR)
→ Arithmetic Operators (+, -, *, /, %)
→ Constant Values
→ Tuple Attribute References
→ Functions Attribute(S.id)

=

Attribute(R.id)

AND

>

Attribute(value) Constant(100)
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1000

991 9

true

1000

Execution Context

Expression Evaluation

PREPARE xxx AS
 SELECT * FROM S
  WHERE S.val = $1 + 9 Current Tuple

(123, 1000)
Query Parameters
(int:991)

Table Schema
S→(int:id, int:val)

Attribute(S.val)

Constant(9)

=

+

Parameter($1)

EXECUTE xxx(991)
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Expression Evaluation

PREPARE xxx AS
 SELECT * FROM S
  WHERE S.val = $1 + 9

EXECUTE xxx(991)
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Is this a good idea?

Several Function calls (possible virtual)
Several pointer chases (depth-first traversal)
Dealing with schema / types / exec_ctx
Repeated work for every tuple

Fundamentally, what 
did we want to do?

cmp_eq $r1 $r2
je compare_true;
jmp compare_false;

Attribute(S.id)

=

Attribute(R.id)

We wanted ~2 instructions, 
we got hundreds or more!



Expression / Query Compilation

Evaluating predicates by traversing a 
tree is terrible for the CPU.
→ The DBMS traverses the tree and for 

each node that it visits, it must figure 
out what the operator needs to do.

A better approach is to evaluate the 
expression directly.

An even better approach is to 
vectorize it evaluate a batch of 
tuples at the same time…

Constant(1)

=

Attribute(s.val)

bool check(val) {
  return (val == 1);
}

Machine Code

gcc, Clang, LLVM, …
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SELECT * WHERE s.val = 1;



CONCLUSION

The same query plan can be executed in multiple 
different ways.

(Most) DBMSs will want to use index scans as 
much as possible.

Expression trees are flexible but slow.
JIT compilation can (sometimes) speed them up.
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NEXT CLASS

Parallel Query Execution

42
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