
COMP 421: Files & Databases

Lecture 16: Concurrency Control

Announcements

Project 3 released on Wednesday

Due to recent adjustments, working on schedule
for last third of the class, stay tuned.

We'll handle Project 2 on Wednesday once all late
days are over

2

Concurrency Control

Recovery

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Course Status

A DBMS’s concurrency control and
recovery components permeate
throughout the design of its entire
architecture.

3

Application Logic

Motivation Example #1
4

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Bank Balance : $75

Read Balance: $100

Pay $25

Write Balance: $75
???

Application Logic

Motivation Example #2
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance : $100Bank Balance : $75

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

Write Balance: $75 Write Balance: $75

Strawman System

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.
→ One and only one txn can be running simultaneously in

the DBMS.

Before a txn starts, copy the entire database to a
new file and make all changes to that file.
→ If the txn completes successfully, overwrite the original

file with the new one.
→ If the txn fails, just remove the dirty copy.

6

Problem Statement

A (potentially) better approach is to allow
concurrent execution of independent
transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness

7

Problem Statement

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is
read/written from/to the database.
→ Changes to the “outside world” are beyond the scope of

the DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.

8

Formal Definitions

Database: A fixed set of named data objects (e.g.,
A, B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes next

week.

Transaction: A sequence of read and write
operations (e.g., R(A), W(B), …)
→ DBMS’s abstract view of a user program.
→ A new txn starts with the BEGIN command.
→ The txn stops with either COMMIT or ROLLBACK

9

Correctness Criteria: ACID
10

Atomicity All actions in txn happen, or none
happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Today's Agenda

Atomicity

Consistency

Isolation

Durability

11

Atomicity Of Transactions

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some

actions.

DBMS guarantees that txns are atomic.
→ From user's point of view: txn always either executes all

its actions or executes no actions at all.

12A

Mechanisms For Ensuring Atomicity

Approach #1: Logging
→ DBMS logs all actions so that it can undo the actions of

aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons

13A

Mechanisms For Ensuring Atomicity

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to

those copies. Only when the txn commits is the page
made visible to others.

→ Originally from IBM System R.

Few systems do this:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)

14A

Don't
Do This!

Consistency

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g.,

key definitions, CHECK and ADD CONSTRAINT) and the
DBMS will enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results

(e.g., may not see the updates of an older committed
txn).

→ Difficult for developers to reason about such semantics.
→ The trend is to move away from such models.

15C

https://en.wikipedia.org/wiki/Eventual_consistency

Isolation Of Transactions

Users submit txns, and each txn executes as if it
were running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

16I

Mechanisms For Ensuring Isolation

A concurrency control protocol is how the DBMS
decides the proper interleaving of operations
from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don’t let problems arise in the first place.
→ Optimistic: Assume conflicts are rare; deal with them

after they happen.

17I

Example

Assume at first A and B each have $1000.

T1 transfers $100 from A’s account to B’s

T2 credits both accounts with 6% interest.

18

BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06
B=B*1.06
COMMIT

T2

I

Example

Assume at first A and B each have $1000.

What are the possible outcomes of running T1
and T2?

19

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

T1 T2

I

Example

Assume at first A and B each have $1000.

What are the possible outcomes of running T1
and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before
T2 or vice-versa, if both are submitted together.

But the net effect must be equivalent to these
two transactions running serially in some order.

20I

Example

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes
before T2 or vice versa.

21

→ A+B=$2120
→ A+B=$2120

I

ScheduleSchedule

Serial Execution Example
22

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

A+B=$2120

I

T
IM

E

Interleaving Transactions

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing
and make forward progress.

23I

Interleaving Example (Good)
24

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

A+B=$2120

Interleaving Example (Bad)
25

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

A+B=$2114

I

T
IM

E

Off by $6!

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View
T1 T2

Interleaving Example (Bad)
26

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge
whether a schedule is
correct?

If the schedule is equivalent to
some serial execution.

Formal Properties Of Schedules

Serial Schedule
→ A schedule that does not interleave the actions of

different transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first

schedule is identical to the effect of executing the
second schedule.

27I

Formal Properties Of Schedules

Serializable Schedule
→ A schedule that is equivalent to some serial execution of

the transactions.
→ If each transaction preserves consistency, every

serializable schedule preserves consistency.

Serializability is a less intuitive notion of
correctness compared to txn initiation time or
commit order, but it provides the DBMS with
more flexibility in scheduling operations.
→ More flexibility means better parallelism.

28I

Conflicting Operations

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:
→ They are by different transactions,
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies
→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)
→ Write-Skew (Read-Write)

29I

Lecture #17

Lecture #19

Read-Write Conflicts

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I

Write-Read Conflicts

Dirty Read: One txn reads data written by another
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I

Write-Write Conflicts

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

32

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I

Formal Properties Of Schedules

Given these conflicts, we now can understand
what it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability
→ View Serializability

33

Most DBMSs try
to support this.

No DBMS can do this.

I

Conflict Serializable Schedules

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way

in time.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by

swapping consecutive non-conflicting operations of
different transactions.

34I

Dependency Graphs

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an

operation Oj of Tj and
→ Oi appears earlier in the schedule than

Oj.

Also known as a precedence graph.
A schedule is conflict serializable iff
its dependency graph is acyclic.

35

Ti Tj

I

Dependency Graph

Example #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph reveals
the problem.
The output of T1 depends on
T2, and vice-versa.

Schedule
T1 T2

Dependency Graph

I

T
IM

E

Example #2 – Three Transactions
37

Is this equivalent to a serial
execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule
T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2,

although it starts before it!

I

T
IM

E
Dependency Graph

Example #3 – Inconsistent Analysis
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

Schedule
T1 T2 A

Bif(A≥0): cnt++

if(B≥0): cnt++
ECHO cnt

I

Dependency Graph
T

IM
E

View Serializability

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial

value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also

reads value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final

value of A in S2.

39I

View Serializability
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

AA
A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph

View Serializability
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

Schedule
T1 T2 T3

Allows all conflict
serializable schedules
+ “blind writes”

Schedule
T1 T2 T3

I

T
IM

E

Serializability

View Serializability allows for (slightly) more
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all schedules that you
would consider “serializable.”
→ This is because they don’t understand the meanings of

the operations or the data (recall example #3)
→ In practice, Conflict Serializability is what systems

support because it can be enforced efficiently.

42I

All Schedules

Universe of Schedules
43

View Serializable

Conflict Serializable

I

Serial

Transaction Durability

All the changes of committed transactions should
be persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

44D

Correctness Criteria: ACID
45

Atomicity All actions in txn happen, or none
happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Redo/Undo
Mechanism

Integrity
Constraints

Concurrency
Control

Redo/Undo
Mechanism

Conclusion

Concurrency control and recovery
are among the most important
functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock

requests and schedules actions of
different txns.

→ Ensures that resulting execution is
equivalent to executing the txns one
after the other in some order.

46
A screenshot of text

Description automatically generated

https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

Next Class

Two-Phase Locking

Isolation Levels

47

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Course Status
	Slide 4: Motivation Example #1
	Slide 5: Motivation Example #2
	Slide 6: Strawman System
	Slide 7: Problem Statement
	Slide 8: Problem Statement
	Slide 9: Formal Definitions
	Slide 10: Correctness Criteria: ACID
	Slide 11: Today's Agenda

	Atomicity
	Slide 12: Atomicity Of Transactions
	Slide 13: Mechanisms For Ensuring Atomicity
	Slide 14: Mechanisms For Ensuring Atomicity

	Consistency
	Slide 15: Consistency

	Isolation
	Slide 16: Isolation Of Transactions
	Slide 17: Mechanisms For Ensuring Isolation
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Serial Execution Example
	Slide 23: Interleaving Transactions
	Slide 24: Interleaving Example (Good)
	Slide 25: Interleaving Example (Bad)
	Slide 26: Interleaving Example (Bad)
	Slide 27: Formal Properties Of Schedules
	Slide 28: Formal Properties Of Schedules
	Slide 29: Conflicting Operations
	Slide 30: Read-Write Conflicts
	Slide 31: Write-Read Conflicts
	Slide 32: Write-Write Conflicts
	Slide 33: Formal Properties Of Schedules
	Slide 34: Conflict Serializable Schedules
	Slide 35: Dependency Graphs
	Slide 36: Example #1
	Slide 37: Example #2 – Three Transactions
	Slide 38: Example #3 – Inconsistent Analysis
	Slide 39: View Serializability
	Slide 40: View Serializability
	Slide 41: View Serializability
	Slide 42: Serializability
	Slide 43: Universe of Schedules

	Durability
	Slide 44: Transaction Durability

	Conclusion
	Slide 45: Correctness Criteria: ACID
	Slide 46: Conclusion
	Slide 47: Next Class

