
COMP 421: Files & Databases

Lecture 16: Concurrency Control



Announcements

Project 3 released on Wednesday

Due to recent adjustments, working on schedule 
for last third of the class, stay tuned.

We'll handle Project 2 on Wednesday once all late 
days are over
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Concurrency Control

Recovery

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Course Status

A DBMS’s concurrency control and 
recovery components permeate 
throughout the design of its entire 
architecture.
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Application Logic

Motivation Example #1
4

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance : $100

Sufficient funds?

New balance: $75

Bank Balance : $75

Read Balance: $100

Pay $25

Write Balance: $75
???



Application Logic

Motivation Example #2
5

Read(A);

Check(A > $25);

Pay($25);

A = A – $25;

Write(A);

Bank Balance : $100Bank Balance : $75

New balance: $75 New balance: $75

Sufficient funds? Sufficient funds?

Read Balance: $100 Read Balance: $100

Pay $25 Pay $25

Write Balance: $75 Write Balance: $75



Strawman System

Execute each txn one-by-one (i.e., serial order) as 
they arrive at the DBMS.
→ One and only one txn can be running simultaneously in 

the DBMS.

Before a txn starts, copy the entire database to a 
new file and make all changes to that file.
→ If the txn completes successfully, overwrite the original 

file with the new one.
→ If the txn fails, just remove the dirty copy.
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Problem Statement

A (potentially) better approach is to allow 
concurrent execution of independent 
transactions.

Why do we want that?
→ Better utilization/throughput
→ Increased response times to users.

But we also would like:
→ Correctness
→ Fairness
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Problem Statement

Arbitrary interleaving of operations can lead to:
→ Temporary Inconsistency (ok, unavoidable)
→ Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is 
read/written from/to the database.
→ Changes to the “outside world” are beyond the scope of 

the DBMS.

We need formal correctness criteria to determine 
whether an interleaving is valid.
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Formal Definitions

Database: A fixed set of named data objects (e.g., 
A, B, C, …).
→ We do not need to define what these objects are now.
→ We will discuss how to handle inserts/deletes next 

week.

Transaction: A sequence of read and write 
operations (e.g., R(A), W(B), …)
→ DBMS’s abstract view of a user program.
→ A new txn starts with the BEGIN command.
→ The txn stops with either COMMIT or ROLLBACK
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Correctness Criteria: ACID
10

Atomicity All actions in txn happen, or none 
happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts 
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that 
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”



Today's Agenda

Atomicity

Consistency

Isolation

Durability
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Atomicity Of Transactions

Two possible outcomes of executing a txn:
→ Commit after completing all its actions.
→ Abort (or be aborted by the DBMS) after executing some 

actions.

DBMS guarantees that txns are atomic.  
→ From user's point of view: txn always either executes all 

its actions or executes no actions at all.
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Mechanisms For Ensuring Atomicity

Approach #1: Logging
→ DBMS logs all actions so that it can undo the actions of 

aborted transactions.
→ Maintain undo records both in memory and on disk.
→ Think of this like the black box in airplanes…

Logging is used by almost every DBMS.
→ Audit Trail
→ Efficiency Reasons
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Mechanisms For Ensuring Atomicity

Approach #2: Shadow Paging
→ DBMS makes copies of pages and txns make changes to 

those copies. Only when the txn commits is the page 
made visible to others.

→ Originally from IBM System R.

Few systems do this:
→ CouchDB
→ Tokyo Cabinet
→ LMDB (OpenLDAP)
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Don't
Do This!



Consistency

The database accurately models the real world.
→ SQL has methods to specify integrity constraints (e.g., 

key definitions, CHECK and ADD CONSTRAINT) and the 
DBMS will enforce them.

→ Application must define these constraints.
→ DBMS ensures that all ICs are true before and after the 

transaction ends.

A note on Eventual Consistency.
→ A committed transaction may see inconsistent results 

(e.g., may not see the updates of an older committed 
txn).

→ Difficult for developers to reason about such semantics. 
→ The trend is to move away from such models.
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https://en.wikipedia.org/wiki/Eventual_consistency


Isolation Of Transactions

Users submit txns, and each txn executes as if it 
were running by itself.
→ Easier programming model to reason about.

But the DBMS achieves concurrency by 
interleaving the actions (reads/writes of DB 
objects) of txns.

We need a way to interleave txns but still make it 
appear as if they ran one-at-a-time.
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Mechanisms For Ensuring Isolation

A concurrency control protocol is how the DBMS 
decides the proper interleaving of operations 
from multiple transactions.

Two categories of protocols:
→ Pessimistic: Don’t let problems arise in the first place.
→ Optimistic: Assume conflicts are rare; deal with them 

after they happen.
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Example

Assume at first A and B each have $1000. 

T1 transfers $100 from A’s account to B’s

T2 credits both accounts with 6% interest.
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BEGIN
A=A-100
B=B+100
COMMIT

T1
BEGIN
A=A*1.06   
B=B*1.06
COMMIT

T2
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Example

Assume at first A and B each have $1000. 

What are the possible outcomes of running T1 
and T2?

19

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
A=A*1.06   
B=B*1.06
COMMIT

T1 T2

I



Example

Assume at first A and B each have $1000. 

What are the possible outcomes of running T1 
and T2?

Many! But A+B should be:
→ $2000*1.06=$2120

There is no guarantee that T1 will execute before 
T2 or vice-versa, if both are submitted together.

But the net effect must be equivalent to these 
two transactions running serially in some order.
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Example

Legal outcomes:
→ A=954, B=1166
→ A=960, B=1160

The outcome depends on whether T1 executes 
before T2 or vice versa.
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→ A+B=$2120
→ A+B=$2120

I



ScheduleSchedule

Serial Execution Example
22

≡

A=954, B=1166 A=960, B=1160

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2
BEGIN
A=A*1.06
B=B*1.06
COMMIT

A+B=$2120

I

T
IM

E



Interleaving Transactions

We interleave txns to maximize concurrency.
→ Slow disk/network I/O.
→ Multi-core CPUs.

When one txn stalls because of a resource (e.g., 
page fault), another txn can continue executing 
and make forward progress.
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Interleaving Example (Good)
24

BEGIN
A=A-100

B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06

B=B*1.06
COMMIT

Schedule

A=954, B=1166

≡

BEGIN
A=A-100
B=B+100
COMMIT

T1 T2

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule

A=960, B=1160

I

T
IM

E

A+B=$2120



Interleaving Example (Bad)
25

≢
A=954, B=1166

or
A=960, B=1160

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

A+B=$2114

I

T
IM

E

Off by $6!



BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(A)
W(A)
R(B)
W(B)
COMMIT

DBMS View
T1 T2

Interleaving Example (Bad)
26

BEGIN
A=A-100

B=B+100
COMMIT

BEGIN
A=A*1.06
B=B*1.06
COMMIT

Schedule
T1 T2

A=954, B=1160

I

T
IM

E

A+B=$2114

How do we judge 
whether a schedule is 
correct?

If the schedule is equivalent to 
some serial execution.



Formal Properties Of Schedules

Serial Schedule
→ A schedule that does not interleave the actions of 

different transactions.

Equivalent Schedules
→ For any database state, the effect of executing the first 

schedule is identical to the effect of executing the 
second schedule.
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Formal Properties Of Schedules

Serializable Schedule
→ A schedule that is equivalent to some serial execution of 

the transactions.
→ If each transaction preserves consistency, every 

serializable schedule preserves consistency.

Serializability is a less intuitive notion of 
correctness compared to txn initiation time or 
commit order, but it provides the DBMS with 
more flexibility in scheduling operations.
→ More flexibility means better parallelism.
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Conflicting Operations

We need a formal notion of equivalence that can 
be implemented efficiently based on the notion of 
“conflicting” operations.

Two operations conflict if:
→ They are by different transactions, 
→ They are on the same object and one of them is a write.

Interleaved Execution Anomalies
→ Unrepeatable Read (Read-Write)
→ Dirty Read (Write-Read)
→ Lost Update (Write-Write)
→ Phantom Reads (Scan-Write)
→ Write-Skew (Read-Write)

29I

Lecture #17

Lecture #19



Read-Write Conflicts

Unrepeatable Read: Txn gets different values 
when reading the same object multiple times.

30

BEGIN
R(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

$10

$10
$19

$19

T1 T2

I



Write-Read Conflicts

Dirty Read: One txn reads data written by another 
txn that has not committed yet.

31

BEGIN
R(A)
W(A)

ROLLBACK

T1 T2

BEGIN
R(A)
W(A)
COMMIT

$10
$12

$12
$14

I



Write-Write Conflicts

Lost Update: One txn overwrites uncommitted 
data from another uncommitted txn.

32

BEGIN
W(A)

W(B)
COMMIT

BEGIN
W(A)
W(B)
COMMIT

Bob
$19

T1 T2

$10

Alice

I



Formal Properties Of Schedules

Given these conflicts, we now can understand 
what it means for a schedule to be serializable.
→ This is to check whether schedules are correct.
→ This is not how to generate a correct schedule.

There are different levels of serializability:
→ Conflict Serializability
→ View Serializability

33

Most DBMSs try 
to support this.

No DBMS can do this.

I



Conflict Serializable Schedules

Two schedules are conflict equivalent iff:
→ They involve the same actions of the same transactions.
→ Every pair of conflicting actions is ordered the same way 

in time.

Schedule S is conflict serializable if:
→ S is conflict equivalent to some serial schedule.
→ Intuition: You can transform S into a serial schedule by 

swapping consecutive non-conflicting operations of 
different transactions.
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Dependency Graphs

One node per txn.

Edge from Ti to Tj if:
→ An operation Oi of Ti conflicts with an 

operation Oj of Tj and
→ Oi appears earlier in the schedule than 

Oj.

Also known as a precedence graph.
A schedule is conflict serializable iff 
its dependency graph is acyclic.

35

Ti Tj

I

Dependency Graph



Example #1
36

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN

R(A)
W(A)
R(B)
W(B)
COMMIT

T1 T2

A

B

The cycle in the graph reveals 
the problem.
The output of T1 depends on 
T2, and vice-versa.

Schedule
T1 T2

Dependency Graph

I

T
IM

E



Example #2 – Three Transactions
37

Is this equivalent to a serial 
execution?

BEGIN
R(A)
W(A)

R(B)
W(B)
COMMIT

BEGIN
R(B)
W(B)
COMMIT

T1 T2

BEGIN
R(A)
W(A)
COMMIT

T3

B
A

Schedule
T1 T2 T3

Yes (T2, T1, T3)
→ Notice that T3 should go after T2, 

although it starts before it!

I

T
IM

E
Dependency Graph



Example #3 – Inconsistent Analysis
38

BEGIN
R(A)
A = A-10
W(A)

R(B)
B = B+10
W(B)
COMMIT

BEGIN

R(A)
sum = A
R(B)
sum += B
ECHO sum
COMMIT

T1 T2

Is it possible to modify only the 
application logic so that schedule 
produces a “correct” result but is 
still not conflict serializable?

Schedule
T1 T2 A

Bif(A≥0): cnt++

if(B≥0): cnt++
ECHO cnt

I

Dependency Graph
T

IM
E



View Serializability

Alternative (broader) notion of serializability.

Schedules S1 and S2 are view equivalent if:
→ If T1 reads initial value of A in S1, then T1 also reads initial 

value of A in S2.
→ If T1 reads value of A written by T2 in S1, then T1 also 

reads value of A written by T2 in S2.
→ If T1 writes final value of A in S1, then T1 also writes final 

value of A in S2.
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View Serializability
40

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

A

A

AA
A

T1 T2

T3

Schedule
T1 T2 T3

I

T
IM

E
Dependency Graph



View Serializability
41

BEGIN
R(A)

W(A)

COMMIT

BEGIN
W(A)

COMMIT

BEGIN

W(A)
COMMIT

BEGIN
R(A)
W(A)
COMMIT

BEGIN
W(A)
COMMIT

BEGIN
W(A)
COMMIT

≡
VIEW

Schedule
T1 T2 T3

Allows all conflict 
serializable schedules 
+ “blind writes”

Schedule
T1 T2 T3

I

T
IM

E



Serializability

View Serializability allows for (slightly) more 
schedules than Conflict Serializability does.
→ But it is difficult to enforce efficiently.

Neither definition allows all schedules that you 
would consider “serializable.”
→ This is because they don’t understand the meanings of 

the operations or the data (recall example #3)
→ In practice, Conflict Serializability is what systems 

support because it can be enforced efficiently.

42I



All Schedules

Universe of Schedules
43

View Serializable

Conflict Serializable

I

Serial



Transaction Durability

All the changes of committed transactions should 
be persistent.
→ No torn updates.
→ No changes from failed transactions.

The DBMS can use either logging or shadow 
paging to ensure that all changes are durable.
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Correctness Criteria: ACID
45

Atomicity All actions in txn happen, or none 
happen.
“All or nothing…”

Consistency If each txn is consistent and the DB starts 
consistent, then it ends up consistent.
“It looks correct to me…”

Isolation Execution of one txn is isolated from that 
of other txns.
“All by myself…”

Durability If a txn commits, its effects persist.
“I will survive…”

Redo/Undo
Mechanism

Integrity 
Constraints

Concurrency 
Control

Redo/Undo 
Mechanism



Conclusion

Concurrency control and recovery 
are among the most important 
functions provided by a DBMS.

Concurrency control is automatic
→ System automatically inserts lock/unlock 

requests and schedules actions of 
different txns.

→ Ensures that resulting execution is 
equivalent to executing the txns one 
after the other in some order.

46
A screenshot of text

Description automatically generated

https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf


Next Class

Two-Phase Locking

Isolation Levels
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