COMP 421: Files & Databases

Lecture 16: Concurrency Control

”il
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Announcements

Project 3 released on Wednesday

Due to recent adjustments, working on schedule
for last third of the class, stay tuned.

We'll handle Project 2 on Wednesday once all late
days are over

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Course Status 3

A DBMS’s concurrency control and
recovery components permeate

throughout the design of its entire
architecture. Operator Execution

Query Planning

Access Methods

Buffer Pool Manager

lalala\Wial W

Disk Manager

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Motivation Example #1 .

Application Logic
. Read Balance: $100
» Read(A); 3
Check(A > $25); Sufficient funds? Q

‘ Bank Balance : $75

Pay($25); Pay $25 _®7
¥

75

0@’ Write Balance: $75

1 UN
— DEPARTMENT OF
COMPUTER SCIENCE

Motivation Example #2

Application Logic
»Read(A);
Check(A > $25);
Pay($25);
A=A - $25;
Write(A);

=)
He
=Z
o

Read Balance: S100

Read Balance: $100

¥

¥

Sufficient funds?

Sufficient funds?

¥

¥

Pay $25

Pay $25

New balance: S75

New balance: $75

¥

¥

Write Balance: S75

Write Balance: $75

Bank Balance : $75

| UNC

||aﬂ z

S DEPARTMENT OF
COMPUTER SCIENCE

Strawman System

Execute each txn one-by-one (i.e., serial order) as
they arrive at the DBMS.

— One and only one txn can be running simultaneously in
the DBMS.

Before a txn starts, copy the entire database to a

new file and make all changes to that file.

— |f the txn completes successfully, overwrite the original
file with the new one.

— |f the txn fails, just remove the dirty copy.

Problem Statement

A (potentially) better approach is to allow
concurrent execution of independent
transactions.

Why do we want that?
— Better utilization/throughput
— Increased response times to users.

But we also would like:
— Correctness
— Fairness

i | UNC

IL]

e DEPARTMENT OF
COMPUTER SCIENCE

Problem Statement

Arbitrary interleaving of operations can lead to:
— Temporary Inconsistency (ok, unavoidable)
— Permanent Inconsistency (bad!)

The DBMS is only concerned about what data is

read/written from/to the database.

— Changes to the “outside world” are beyond the scope of
the DBMS.

We need formal correctness criteria to determine
whether an interleaving is valid.

=)
He
=7
o

Formal Definitions 9

Database: A fixed set of named data objects (e.g.,
AB,C,..).
— We do not need to define what these objects are now.

— We will discuss how to handle inserts/deletes next
week.

Transaction: A sequence of read and write
operations (e.g., R(A), W(B), ...)
— DBMS’s abstract view of a user program.

— A new txn starts with the BEGIN command.
— The txn stops with either COMMIT or ROLLBACK

=)
He
=Z
=0

Correctness Criteria: ACID

Atomicity

Consistency

Isolation

Durability

All actions in txn happen, or none
happen.
“All or nothing...”

If each txn is consistent and the DB starts
consistent, then it ends up consistent.
“It looks correct to me...”

Execution of one txn is isolated from that

of other txns.
“All by myself...”

If a txn commits, its effects persist.
“I will survive...”

Today's Agenda

Atomicity
Consistency
Isolation
Durability

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Atomicity Of Transactions

Two possible outcomes of executing a txn:
— Commit after completing all its actions.

— Abort (or be aborted by the DBMS) after executing some
actions.

DBMS guarantees that txns are atomic.

— From user's point of view: txn always either executes all
its actions or executes no actions at all.

i | UNC

IL]

e DEPARTMENT OF
COMPUTER SCIENCE

;)

=

Mechanisms For Ensuring Atomicity

Approach #1: Logging

— DBMS logs all actions so that it can undo the actions of
aborted transactions.

— Maintain undo records both in memory and on disk.

— Think of this like the black box in airplanes...

Logging is used by almost every DBMS.
— Audit Trail
— Efficiency Reasons

Mechanisms For Ensuring Atomicity

ol
'Q’ » Approach #2: Shadow Paging

) — DBMS makes copies of pages and txns make changes to
Don t | those copies. Only when the txn commits is the page
Do This! made visible to others.

— Originally from IBM System R.

Few systems do this:
— CouchDB

— Tokyo Cabinet

— LMDB (OpenLDAP)

=)
He
=Z
o

i LJN’(j

”iﬂ Z

S DEPARTMENT OF
COMPUTER SCIENCE

Consistency

The database accurately models the real world.

— SQL has methods to specify integrity constraints (e.g.,
key definitions, CHECK and ADD CONSTRAINT) and the
DBMS will enforce them.

— Application must define these constraints.

— DBMS ensures that all ICs are true before and after the
transaction ends.

A note on Eventual Consistency.
— A committed transaction may see inconsistent results

(e.g., may not see the updates of an older committed
txn).
— Difficult for developers to reason about such semantics.
— The trend is to move away from such models.

https://en.wikipedia.org/wiki/Eventual_consistency

Isolation Of Transactions

Users submit txns, and each txn executes as if it

were running by itself.
— Easier programming model to reason about.

But the DBMS achieves concurrency by
interleaving the actions (reads/writes of DB
objects) of txns.

We need a way to interleave txns but still make it
appear as if they ran one-at-a-time.

=)
He
=7
o

Mechanisms For Ensuring Isolation

A concurrency control protocol is how the DBMS
decides the proper interleaving of operations
from multiple transactions.

Two categories of protocols:

— Pessimistic: Don’t let problems arise in the first place.

— Optimistic: Assume conflicts are rare; deal with them
after they happen.

=)
He
=Z
o

Example

Assume at first A and B each have $1000.
T, transfers $100 from A’s account to B’s
T, credits both accounts with 6% interest.

T, T,
BEGIN BEGIN
A=A-100 A=Ax1 .06
B=B+100 B=B*1.06
COMMIT COMMIT

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Example

Assume at first A and B each have $1000.
What are the possible outcomes of running T,

andT,?
T, T,
BEGIN BEGIN
A=A-100 A=A%1.06
B=B+100 B=B*1.06
COMMIT COMMIT

i | UNC

”il

ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Example

Assume at first A and B each have $1000.

What are the possible outcomes of running T,
andT,?

Many! But A+B should be:
— $2000*1.06=$2120

There is no guarantee that T, will execute before
T, or vice-versa, if both are submitted together.

But the net effect must be equivalent to these
two transactions running serially in some order.

=)
He
=7
o

Example

Legal outcomes:
— A=954, B=1166— A+B=$2120
— A=960, B=1160— A+B=$2120

The outcome depends on whether T, executes
before T, or vice versa.

i | UNC

”il

ELLERY DEPARTMENT OF
COMPUTER SCIENCE

1 UN
— DEPARTMENT OF
COMPUTER SCIENCE

Serial Execution Example

Schedule
T, T,

BEGIN

A=A-100

B=B+100

COMMIT
BEGIN
A=A*x1.06
B=Bx1.06
COMMIT

| A=954, B=1166 |«

Schedule
T, T,

BEGIN
A=A%x1.06
B=B*1.06
COMMIT

BEGIN

A=A-100

B=B+100

COMMIT

» A=960, B=1160]

A+B=$2120

;)

=

Interleaving Transactions

We interleave txns to maximize concurrency.
— Slow disk/network I/0O.
— Multi-core CPUs.

When one txn stalls because of a resource (e.g.,
page fault), another txn can continue executing
and make forward progress.

Interleaving Example (Good)

q

B=B+100 :)

COMMIT

q

Schedule
T, T,
BEGIN
A=A-100
BEGIN
A=A*x1.06

:B=B*1.06:>

COMMIT

=)
He
=Z
o

| A=954, B=1166 ¢

Schedule
T, T,

BEGIN

A=A-100

B=B+100

COMMIT BEGIN
A=A*1.06
B=B*x1.06
COMMIT

» A=960, B=1160]

A+B=$2120

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

Interleaving Example (Bad)

__Off by $6!

Schedule
T, T,
BEGIN
A=A-100
BEGIN
A=A*x1.06
B=B*1.06
COMMIT
B=B+100
COMMIT
A=954, B=1160
A+B=%$2114

A=954, B=1166

* or

A=960, B=1160

Interleaving Example (Bad)

Schedule DBMS View
T, T, T, T,

BEGIN =6l we judge

A=A-100 =————— .
BEGIN ather a schedule is
A=A%1.06 BEGIN
B=B*1.06 R(A)
COMMIT W(A)

B=B+100
COMMIT

. COMMIT ..
Qserial executian.

W(B)
COMMIT

A=954, B=1160

A+B=$2114

=)
He
=Z
o

Formal Properties Of Schedules

Serial Schedule

— A schedule that does not interleave the actions of
different transactions.

Equivalent Schedules

— For any database state, the effect of executing the first

schedule is identical to the effect of executing the
second schedule.

=)
He
=Z
o

Formal Properties Of Schedules

Serializable Schedule

— A schedule that is equivalent to some serial execution of
the transactions.

— |f each transaction preserves consistency, every
serializable schedule preserves consistency.

Serializability is a less intuitive notion of
correctness compared to txn initiation time or
commit order, but it provides the DBMS with

more flexibility in scheduling operations.
— More flexibility means better parallelism.

| UNC

”iﬂ Z

S DEPARTMENT OF
COMPUTER SCIENCE

Conflicting Operations

We need a formal notion of equivalence that can
be implemented efficiently based on the notion of
“conflicting” operations.

Two operations conflict if:
— They are by different transactions,
— They are on the same object and one of them is a write.

Interleaved Execution Anomalies

— Unrepeatable Read (Read-Write)

— Dirty Read (Write-Read)

— Lost Update (Write-Write)

— Phantom Reads (Scan-Write)
fl UNC — Write-Skew (Read-Write)

Read-Write Conflicts

Unrepeatable Read: Txn gets different values
when reading the same object multiple times.

T, T
BEGIN
$10 mmR(A)
BEGIN
R(A) $10
W(A) $19
COMMIT
$19 4mmR(A)
COMMIT

Write-Read Conflicts

Dirty Read: One txn reads data written by another
txn that has not committed yet.

$10
$12

COMMIT

(ROLLBACK)

1 UN
— DEPARTMENT OF
COMPUTER SCIENCE

Write-Write Conflicts

Lost Update: One txn overwrites uncommitted
data from another uncommitted txn.

T, 15
BEGIN
$10 A
BEGIN
W(A) $19
W(B) Bob
4 5/ COMMIT

COMMIT

1 UN
— DEPARTMENT OF
COMPUTER SCIENCE

Formal Properties Of Schedules

Given these conflicts, we now can understand

what it means for a schedule to be serializable.
— This is to check whether schedules are correct.
— This is not how to generate a correct schedule.

There are different levels ialiaalaili
—> Conflict Serializability Most DBMSsht_“ry
— View Serializability to support this.

’_/l
No DBMS can do this.

| UNC

||aﬂ z

S DEPARTMENT OF
COMPUTER SCIENCE

Conflict Serializable Schedules

Two schedules are conflict equivalent iff:
— They involve the same actions of the same transactions.

— Every pair of conflicting actions is ordered the same way
in time.

Schedule S is conflict serializable if:

— S is conflict equivalent to some serial schedule.

— Intuition: You can transform S into a serial schedule by
swapping consecutive non-conflicting operations of
different transactions.

| UNC

”iﬂ z

S DEPARTMENT OF
COMPUTER SCIENCE

)

=

Dependency Graphs

One node per txn.
Edge from T, to T, if:

— An operation 0; of T; conflicts with an
operation O, of T, and

— 0, appears earlier in the schedule than
0..

J

Also known as a precedence graph.
A schedule is conflict serializable iff
its dependency graph is acyclic.

Dependency Graph

Example #1

Schedule Dependency Graph
T, T, A
BEGIN BEGIN

0 (1, (7,
W(A)
¢ ‘?R(A)
W(A) B
R(B) (_%
P2 @ o W(B) h I\

/ COMMIT e cycle in the graph reveals
R(B) the problem.
w(B) The output of T, depends on
COMMIT _T» and vice-versa.)

i | UNC

IL]

e DEPARTMENT OF
COMPUTER SCIENCE

Example #2 — Three Transactions

Schedule Dependency Graph

T, T, T3
BEGIN

R(A)

W(A) BEGIN
R(A)
W(A)

BEGIN | COMMIT
R(B)

W(B) Is this equivalent to a serial
RyCOMMIT execution?
W(B)
COMMIT Yes (TZI T1’ T3)

— Notice that T; should go after T,
although it starts before it!

=)
He
=Z
0

)

=

Example #3 — Inconsistent Analysis

Schedule
T, T,
BEGIN BEGIN

A= A-10)

R(B)

B = gfl10
W(B)
COMMIT

b
if(Az@):ﬁht++
R |

3f(Bz®):cnt++

JECHO cnt

COMMIT

Dependency Graph

Is it possible to modify only the
application logic so that schedule
produces a “correct” result but is
still not conflict serializable?

View Serializability

Alternative (broader) notion of serializability.

Schedules S, and S, are view equivalent if:

— If T, reads initial value of Ain S, then T, also reads initial
value of Ain S..

— If T, reads value of A written by T, in S,, then T, also
reads value of A written by T, in S..

— If T, writes final value of A in S;, then T, also writes final
value of Ain S..

i | UNC

IL]

e DEPARTMENT OF
COMPUTER SCIENCE

View Serializability

Schedule

COMMIT

COMMIT

Dependency Graph

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

View Serializability

Schedule Schedule
T, T, T3 T, T, T3

BEGIN BEGIN
R(A) BEGIN R(A)

W(A) W(A)

COMMIT
W(A) BEGIN
C W(A)

COMMIT | COMMIT COMMIT
Allows all conflict Qv
serializable schedules COMMIT

* “blind writes”)

| UNC

”iﬂ z

S DEPARTMENT OF
COMPUTER SCIENCE

Serializability

View Serializability allows for (slightly) more

schedules than Conflict Serializability does.
— But it is difficult to enforce efficiently.

Neither definition allows all schedules that you

would consider “serializable.”

— This is because they don’t understand the meanings of
the operations or the data (recall example #3)

— |n practice, Conflict Serializability is what systems
support because it can be enforced efficiently.

Universe of Schedules

All Schedules

View Serializable

konflict Serializable

=)
He
=7
o

Transaction Durability

All the changes of committed transactions should

be persistent.
— No torn updates.
— No changes from failed transactions.

The DBMS can use either logging or shadow
paging to ensure that all changes are durable.

1 UN
— DEPARTMENT OF
COMPUTER SCIENCE

Correctness Criteria: ACID

Redo/Undo
Mechanism
Atomicity All actions in txn happen, or none
N happen.
Integrit “ . .
Constraints All or nothing...

Consistency If ea;h txn is con;istent and the.DB starts
consistent, then it ends up consistent.

Concurrency “It looks correct to me...”
Control
solation Execution of one txn is isolated from that
- of other txns.
Redo/Undo “All by myself.,, o
Mechanism
urability If a txn commits, its effects persist.

o UNC o “I will survive...”

@-

Concurrency control and recovery

' tant
are among the most impor
functions provided by a DBMS.

Concurrency control is automatlcI
— System automatically inserts lock/unloc

i f
roniioctc and cchodiilac artinne n

Spanner: Google’s Globally-Distributed Database

James C, Corben, Jeffrey Dean, Michael Epstein, Andrew Fikes,

Christopher Frast, JJ Furman,

Sanjay Ghemawar, Andrey Gubarey, Christopher Heiser, Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lioyd,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Christopher Taylor, Ruth Wang, Dale Woodford

Sergey Melnik, David Mwaura,
Szymaniak,

Google, Ine.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It js
the first system to distribute data ar global scale and sup-
port externally-consistent distributed transactions, This

and its implementation are critical {o supporting exer-
nal consistency and a variety of powerful features: pop-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schemg changes, across al) of Spanner,

1 Introduction

tency over higher availability, us Jong as they can survive
1 or 2 datacenter failures.

Spanner's main focus. is managing cross-datacenter
replicated data, but we have also spent g great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable). we
have also consistently received complaints from users
that Bigtable can be difficult 1o use for some kinds of ap-
plications: those thar have complex, evolving schemas,
or those that want strong consistency in the Ppresence of
wide-area replicai Similar claims have been made
by other authors Many applications at Google
have chosen 1o use Megasiore (51 because of its semi-
relational data model and support for synchronous repli-
pile its relatively poor write throughput, As g
e Spanuer has evalved from a Bigtable-like

of transactions.

We believe it

. h per
— 1s better to have application programmers de:?:ﬂ with Eot_
formance problems due to overuse of -transactlons lils bo
tlenecks arise, rather than always coding around the

fey-value store into 3 temporal multi-version
Data is stored in schematized semi-relational
is versioned, and each version is automati-
Amped with its commit time; old versions of
fect to configuralle garbage-collection poli-
dplications can read datg at old timestamps,
Ports general-purpose transactions, and pro-
Fhased query language.

ally-distributed database, Spanner provides
Bsting features. First, he replication con-
Or data can be dynamically controlied at a
applications. Applications can specify con-

fitrol which datacenters contain which data,

is from its users (to control read latency),

Fas are from each other (to controf wrile [a-

oW many replicas are maintained (to con-

availability, and read performance}. Data

dynamically and iransparently moved be-

tiers by the system to balance resource us-

ficenters. Second, Spanner has two features

It to implement in adistributed database: it

UNC

E
DEPARTMENT O
COMPUTER SCIENCE

https://static.googleusercontent.com/media/research.google.com/en/archive/spanner-osdi2012.pdf

Next Class

Two-Phase Locking
Isolation Levels

”iﬂ
ELLERY DEPARTMENT OF
COMPUTER SCIENCE

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Course Status
	Slide 4: Motivation Example #1
	Slide 5: Motivation Example #2
	Slide 6: Strawman System
	Slide 7: Problem Statement
	Slide 8: Problem Statement
	Slide 9: Formal Definitions
	Slide 10: Correctness Criteria: ACID
	Slide 11: Today's Agenda

	Atomicity
	Slide 12: Atomicity Of Transactions
	Slide 13: Mechanisms For Ensuring Atomicity
	Slide 14: Mechanisms For Ensuring Atomicity

	Consistency
	Slide 15: Consistency

	Isolation
	Slide 16: Isolation Of Transactions
	Slide 17: Mechanisms For Ensuring Isolation
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Serial Execution Example
	Slide 23: Interleaving Transactions
	Slide 24: Interleaving Example (Good)
	Slide 25: Interleaving Example (Bad)
	Slide 26: Interleaving Example (Bad)
	Slide 27: Formal Properties Of Schedules
	Slide 28: Formal Properties Of Schedules
	Slide 29: Conflicting Operations
	Slide 30: Read-Write Conflicts
	Slide 31: Write-Read Conflicts
	Slide 32: Write-Write Conflicts
	Slide 33: Formal Properties Of Schedules
	Slide 34: Conflict Serializable Schedules
	Slide 35: Dependency Graphs
	Slide 36: Example #1
	Slide 37: Example #2 – Three Transactions
	Slide 38: Example #3 – Inconsistent Analysis
	Slide 39: View Serializability
	Slide 40: View Serializability
	Slide 41: View Serializability
	Slide 42: Serializability
	Slide 43: Universe of Schedules

	Durability
	Slide 44: Transaction Durability

	Conclusion
	Slide 45: Correctness Criteria: ACID
	Slide 46: Conclusion
	Slide 47: Next Class

