
COMP 421: Files & Databases

Lecture 4: It's log!

Announcements

Project 1: Buffer Pool Manager

will be released this afternoon

Important Dates:

• Buffer pool manager lecture [9/10]

• Bootcamp 2 [9/16, 9/17]

• Project 1 Due [9/29], late days allowed

• Read the description, start early, come to OH

2

P0 Postmortem

• Median was 100, Mean was 91.7

• Some FAQs
• devcontainer?
• Where does my code go?
• Build/debug/test?

• Mostly, we wanted you to figure this out, going
forward, we'll be better about file paths

• Formatting issues
• See writeup, make targets for formatting
• Some Windows users had issues, check VS Code settings

• If you start early and come to OH, we can help!

3

Bootcamp 1 Postmortem

• Bootcamp 2 will be longer so we don't rush
• 1.5 hours, rooms TBD

• More interactive, more demos, more writing code

• Not an explicit walkthrough of P1, but highly
related
• If you have read and started P1, you will get more out of

Bootcamp
• We can answer specific C++ questions

4

Last Class

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage
scheme for organizing tuples across heap files.

We had just gotten to talking about how to
organize bytes within a page...

5

Disk-oriented DBMS

Disk

Memory

D
a

ta
b

a
se

 F
ile

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
o

o
l

2
Header

4
Header

5
Header

Get Page #2

Directory
Interpret Page #2 layout

Pointer to Page #2

Execution
Engine

6

Update Page #2

Slotted Pages

The most common layout scheme is
called slotted pages.

The slot array maps "slots" to the
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the

last slot used.

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Fixed- and Var-length
Tuple Data

Slot Array

7

1 2 3 4 5 6 7

Record IDs

The DBMS assigns each logical tuple
a unique record identifier that
represents its physical location in the
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary

key and stores them as a hidden
attribute.

Applications should never rely on
these IDs to mean anything.

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)

8

%%physloc%% (8-bytes)

https://www.sqlite.org/rowidtable.html

Tuple-oriented Storage

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert
new version in a different page.

9

Today's Agenda

Tuple Structure

Log-Structured Storage

10

Header

Tuple #4

Tuple #2

Tuple #3

Tuple #1

Slot Array
1 2 3 4 5 6 7

Tuple Storage

A tuple is essentially a sequence of bytes prefixed
with a header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

11

Data Layout
12

CREATE TABLE foo (
 id INT PRIMARY KEY,
 value BIGINT
);

header id value

unsigned char[]

reinterpret_cast<int32_t*>(address)

Word-aligned Tuples

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

13

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

unsigned char[]

Word-alignment: Padding

Add empty bits after attributes to ensure that
tuple is word aligned. Essentially round up the
storage size of types to the next largest word size.

14

id cdate zipc
00000000
00000000
00000000
00000000

00000
000
00000
000

c

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

32-bits

64-bits

16-bits

32-bits

id cdate c zipc

Word-alignment: Reordering

Switch the order of attributes in the tuples'
physical layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.

15

CREATE TABLE foo (

 id INT PRIMARY KEY,

 cdate TIMESTAMP,

 color CHAR(2),

 zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000
000000000000
000000000000

32-bits

64-bits

16-bits

32-bits

Data Representation

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer

to another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix

epoch (January 1st, 1970).

16

Variable Precision Numbers

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed
precision numbers because CPU ISA's (Xeon, Arm)
have instructions / registers to support them.

But they do not guarantee exact values…

17

https://en.wikipedia.org/wiki/IEEE-754
https://en.wikipedia.org/wiki/IEEE-754
https://en.wikipedia.org/wiki/IEEE-754

Variable Precision Numbers

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %f\n", x+y);
 printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %.20f\n", x+y);
 printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

18

Variable Precision Numbers

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %f\n", x+y);
 printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
 float x = 0.1;
 float y = 0.2;
 printf("x+y = %.20f\n", x+y);
 printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890

19

Fixed Precision Numbers

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors
are unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide

arbitrary precision (e.g., decimal point can be in a
different position per value).

20

Postgres: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

 int ndigits;

 int weight;

 int scale;

 int sign;

 NumericDigit *digits;

} numeric;

of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage

21

NULL Data Types

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data

type (e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this

messes up with word alignment.

22

Don't
Do This!

https://db.cs.cmu.edu/papers/2024/zeng-damon24.pdf

Large Values

Most DBMSs do not allow a tuple to
exceed the size of a single page.

To store values that are larger than a
page, the DBMS uses separate
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings

23

Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXTsize location

CREATE TABLE foo (
 id INT PRIMARY KEY,
 data INT,
 contents TEXT
);

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

External Value Storage

Some systems allow you to store a
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the
contents of an external file.
→ No durability protections.
→ No transaction protections.

24

Data

Header a b c d e

External File

Tuple

https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

The Trouble with Tuples
25

Tuple-oriented Storage

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty

slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is

that each tuple is on a separate page.

What if the DBMS cannot overwrite data in
pages and could only create new pages?
→ Examples: Some object stores, HDFS, Google Colossus

26

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

It's Log!
27

Log-structured Storage

Instead of storing tuples in pages and updating
them in-place, the DBMS maintains a log that
records changes to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM

Trees) in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the
changes sequentially to disk (SSTable).

28

https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree

MemTable

Log-structured Storage

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey Lo

w
→
H
ig
h

SSTable

SSTable

Level #0

Level #1

Level #2

SSTable

SSTableSSTable

GET (key101)

• Min/Max Key
Per SSTable

• Key Filter
Per Level

SummaryTable

PUT (key101,a1)PUT (key102,b1)PUT (key101,a2)PUT (key103,c1)

Newest→Oldest

29

Log-structured Storage

Key-value storage that appends log
records on disk to represent changes
to tuples (PUT, DELETE).
→ Each log record must contain the tuple's

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without
checking previous log records.

30

K
ey Lo

w
→
H
ig
h

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

Log-structured Compaction

Periodically compact SSTAbles to reduce wasted
space and speed up reads.
→ Only keep the "latest" values for each key using a sort-

merge algorithm.

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

SSTable

PUT (key101,a2)

PUT (key102,b1)

DEL (key103)

PUT (key104,d2)

SSTable

DEL (key100)

PUT (key101,a3)

PUT (key102,b2)

PUT (key103,c1)

PUT (key104,d2)

SSTable

31

Newest→Oldest

+

Discussion

Log-structured storage managers are more
common today than in previous decades.
→ This is partly due to the proliferation of RocksDB.

What are some downsides of this approach?
→ Read Amplification
→ Write Amplification
→ Compaction is Expensive

32

Conclusion

Log-structured storage is an alternative approach
to the tuple-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes

sequential disk I/O.

38

Next Class

How to make pages stored on disk available in
memory? The buffer pool manager!

39

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: P0 Postmortem
	Slide 4: Bootcamp 1 Postmortem
	Slide 5: Last Class
	Slide 6: Disk-oriented DBMS
	Slide 7: Slotted Pages
	Slide 8: Record IDs
	Slide 9: Tuple-oriented Storage
	Slide 10: Today's Agenda

	Data Representation
	Slide 11: Tuple Storage
	Slide 12: Data Layout
	Slide 13: Word-aligned Tuples
	Slide 14: Word-alignment: Padding
	Slide 15: Word-alignment: Reordering
	Slide 16: Data Representation
	Slide 17: Variable Precision Numbers
	Slide 18: Variable Precision Numbers
	Slide 19: Variable Precision Numbers
	Slide 20: Fixed Precision Numbers
	Slide 21: Postgres: NUMERIC
	Slide 22: NULL Data Types
	Slide 23: Large Values
	Slide 24: External Value Storage

	Log-Structured
	Slide 25: The Trouble with Tuples
	Slide 26: Tuple-oriented Storage
	Slide 27: It's Log!
	Slide 28: Log-structured Storage
	Slide 29: Log-structured Storage
	Slide 30: Log-structured Storage
	Slide 31: Log-structured Compaction
	Slide 32: Discussion

	Conclusion
	Slide 38: Conclusion
	Slide 39: Next Class

