COMP 421: Files & Databases

Lecture 4: It's log!

COMPUTER SCIENCE

2
Announcements

Project 1: Buffer Pool Manager
will be released this afternoon

Important Dates:

Buffer pool manager lecture [9/10]
Bootcamp 2 [9/16, 9/17]

Project 1 Due [9/29], late days allowed

Read the description, start early, come to OH

COMPUTER SCIENCE

PO Postmortem 3

e Median was 100, Mean was 91.7
* Some FAQs

* devcontainer?
* Where does my code go?
* Build/debug/test?

* Mostly, we wanted you to figure this out, going
forward, we'll be better about file paths

* Formatting issues
* See writeup, make targets for formatting
 Some Windows users had issues, check VS Code settings

* If you start early and come to OH, we can help!

COMPUTER SCIENCE

Bootcamp 1 Postmortem .

* Bootcamp 2 will be longer so we don't rush
1.5 hours, rooms TBD

 More interactive, more demos, more writing code

* Not an explicit walkthrough of P1, but highly

related
* |f you have read and started P1, you will get more out of

Bootcamp
* We can answer specific C++ questions

Last Class 5

We presented a disk-oriented architecture where
the DBMS assumes that the primary storage
location of the database is on non-volatile disk.

We then discussed a page-oriented storage
scheme for organizing tuples across heap files.

We had just gotten to talking about how to
organize bytes within a page...

Disk-oriented DBMS

Get Page #2
Execution

— A prarenesss s > : Engine

8 Directory | Jreade] romterto fage e Interpret Page #2 layout
E I:D:l 2 :g...........g. | p g y
@ | [CLL]
‘q§ EEE : Update Page #2

@

.1
= 4 =

t Directory Headerl /-/eaderl Headerl Headerl Heaa’erl

m [X X]
Sl 1 2 3 4 5 — Pages

S| |LLL]

c —

Q

Slotted Pages 7

The most common layout scheme is Slot f\rray
called slotted pages.

v 23456 7"

Header

The slot array maps "slots" to the »
tuples' starting position offsets. i
v]
The header keeps track of: Tuple # T“X*“
— The # of used slots
— The offset of the starting location of the Tuple #2 | Tuple #1

last slot used. ' .

I
Fixed- and Var-length
Tuple Data

COMPUTER SCIENCE

Record IDs 8

The DBMS assigns each logical tuple

a unique record identifier that POStgreSQL
represents its physical location in the CTID (6-bytes)
database. W
— File Id, Page Id, Slot # .
— Most DBI\%SS do not store ids in tuple. SQLIT’E
— SQLite uses ROWID as the true primary ROWID (8-bytes)
key and stores them as a hidden S
attribute. ZSQL Server
% %physloc%% (8-bytes)
Applications should never rely on ORACLE
these IDs to mean anything. ROWID (10-bytes)

| UNC
” | DEPARTMENT OF
COMPUTER SCIENCE

https://www.sqlite.org/rowidtable.html

Tuple-oriented Storage

Insert a new tuple:

— Check page directory to find a page with a free slot.

— Retrieve the page from disk (if not in memory).

— Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
— Check page directory to find location of page.
— Retrieve the page from disk (if not in memory).
— Find offset in page using slot array.
— |f new data fits, overwrite existing data.
Otherwise, mark existing tuple as deleted and insert
new version in a different page.

Today's Agenda

Tuple Structure Slot f\rray

v 23456 7"

Log-Structured Storage
Header

>

« Tuple #4} Tuple #3

Tuple #2 Tuple #1

COMPUTER SCIENCE

Tuple Storage

A tuple is essentially a sequence of bytes prefixed
with a header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes
into attribute types and values.

The DBMS's catalogs contain the schema
information about tables that the system uses to
figure out the tuple's layout.

Data Layout

id INT PRIMARY KEY, header id value
value BIGINT

);

*l"unsignea'char[]
‘REATE TABLE foo (

reinterpret_cast<int32_t*>(address)

COMPUTER SCIENCE

Word-aligned Tuples

All attributes in a tuple must be word aligned to
enable the CPU to access it without any
unexpected behavior or additional work.

CREATE TABLE foo (
Eraliy] id INT PRIMARY KEY,
LR cdate TIMESTAMP,
W9 014] color CHAR(2),
EyZJiy zipcode INT

COMPUTER SCIENCE

id

¥

cdate

unsigned char([]

c zipc

WW
64-bit Word 64-bit Word 64-bit Word 64-bit Word

Word-alighment: Padding

Add empty bits after attributes to ensure that
tuple is word aligned. Essentially round up the
storage size of types to the next largest word size.

CREATE TABLE foo (
Eraliy] id INT PRIMARY KEY,
LR cdate TIMESTAMP,
W9 014] color CHAR(2),
EyZJiy zipcode INT

64-bit Word 64-bit Word 64-bit Word 64-bit Word

Word-alighment: Reordering

Switch the order of attributes in the tuples'

physical layout to make sure they are aligned.
— May still have to use padding to fill remaining space.

CREATE TABLE foo (
Eraliy] id INT PRIMARY KEY,
LR cdate TIMESTAMP,
W9 014] color CHAR(2),
EyZJiy zipcode INT

64-bit Word 64-bit Word 64-bit Word 64-bit Word

Data Representation

INTEGER/BIGINT/SMALLINT/TINYINT

— Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
— |EEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB

— Header with length, followed by data bytes OR pointer
to another page/offset with data.

— Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL

— 32/64-bit integer of (micro/milli)-seconds since Unix
epoch (January 15, 1970).

Variable Precision Numbers

Inexact, variable-precision numeric type that uses
the "native" C/C++ types.

Store directly as specified by I[EEE-754.
— Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed
precision numbers because CPU ISA's (Xeon, Arm)
have instructions / registers to support them.

But they do not guarantee exact values...

https://en.wikipedia.org/wiki/IEEE-754
https://en.wikipedia.org/wiki/IEEE-754
https://en.wikipedia.org/wiki/IEEE-754

Variable Precision Numbers

Rounding Example Output
#include <stdio.h> X+y = 0.300000
:““#include <stdio.h> 0.3 = 0.300000
. .. Xty = 0.30000001192092895508
int main(int arge, charx argvll) { | |9 3 = 9.29999999999999998890
float x = 0.1;
float vy = 0.2;
3 printf("x+y = %.20f\n", x+y);
printf("0.3 = %.20f\n", 0.3);
3

COMPUTER SCIENCE

Variable Precision Numbers

Output
x+y = 0.300000
0.3 = 0.300000

+y = 0.30000001192092895508
.3 = 0.29999999999959998890

Fixed Precision Numbers

Numeric data types with (potentially) arbitrary
precision and scale. Used when rounding errors

are unacceptable.
— Example: NUMERIC, DECIMAL

Many different implementations.

— Example: Store in an exact, variable-length binary
representation with additional meta-data.

— Can be less expensive if the DBMS does not provide
arbitrary precision (e.g., decimal point can be in a
different position per value).

Postgres: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

of Digits

int ndigits;

Weight of 1% Digit
\ int weight;

Scale Factor\ int sdple;

Positive/Negative/NaN -«

int sign;

NumeriDigit *digits;

numeric;

@ UNC Digit Storage

NULL Data Ty/pum

== NULLS!
Revisiting Null Representation in Modern Columnar Formats

Xinyu Zeng Ruijun Meng Andrew Pavlo
° Tsinghua University Tsinghua University Carnegie Mellon University
B It m a seng-xy21 @mails.tsinghug,cdurcn mij21@mails tsinghua.edy.cn pavlo@es.cmu,edu
[]
I o N u I c o u m n Wes McKinney Huanchen Zhang"
o L] Posit PBC Tsinghua University

wes@posit.co huanchen@xsinghua,edu,cn

— Store a bitmap in a centralized hea e

columnar formats and encodings rarcly address Null representa-
tions. Popular file formats like Parquet and ORC follow the same

- design as C-Store from nearly 20 years ago that only stores non-

tt te S a re n u . Hull values contiguously: But recent formats store both o
a r I 2 Nl values, with Kolls being set 1 a placeholder valoe 1y 1.
ok, we analyze each approach's pros and cons under difforens

d: istributi h ith diffe SIMDISA),

s, encading
» This | most common approach it

plementations. We optimize the bottlenecks in the traditional N . ~ i .
h I S I S t h e O St C pproach using AVXS12. We also propose o Null g strategy Figure & Null T amples of ongact otder

Tepresentation schemes for a logical data se

tompression ratio at encoding time. From our micro-benchmarks, Today's most widely used columnar file formats {i.e., Apache Par-
v argue that the optinial Null compression depends on severa! fae. Auet [7], Apache ORC (6]) follow the same Conpact layout as the
tors: dfmdmg speed, data disteibution, and Null ratio, Our analysis seminal C-Store DEMS from the 20005 [13]. For each nullable at-
shows that the Conpact layout performs better when Nl . 5 trbulc ina fable, C-Store’s scherme stares non Al (Bixed-width)
high and the p1, aceholder layout is better when the Null ratio is values in densely packed contiguous columns. To ‘handle Nulls, the

low or the data is serial-correlated. scheme tmaintains a separate bitmap to record whethes the value

° ° ACM Reference Format for an attribute at a given position is Null or ot Storing values
[] I a Xinyu Zeng, R Meng, Ardew: Pavk, Wes ikinpey, Hranchen Zhang. i this manner enables better compression and improves query
o I ‘ ° 2024, NULLS! Revisiing Nall Representation in Modern Colomps Fornats Performance. However, because the Conpact layout does ot store

In 20th International Warishop on Data Manasement an New Hardware

(DaMoN 24), June 10, 2024,

position in the column, hampering random aceess ability
10 pages, hitps://doi.org/10,1145/3662014. 3663452 An alternative approach is o store the Null values in Pplace. That

i ceholder value tor e e e T
_) D e S I g n a e a 1 INTRODUCTION (e, sexo, INT_MIN) a5 a placeholder to represent Null for a given

Codd first mentioned how to use Null values to represent missing
dat

(: ' I l @ in arelational datahase in 1975 17). A subsequent paperin 1979 fon contai va ¥
M I N . M O re O deseribed the semantics of Null propagation through ternary logie :ﬂi‘z:‘;::’rEI"":L"A‘:‘J[:’v‘i‘L;:‘i;fi“:’;{“’:::;;“:;’;::‘z"x ':’:
t y p e e g o for SQLs arithmetic and comparison operations 118]. Every major % s uses e 5p
L]

DBMS and data file format [27, 36] supports Nulls to day and they whether or not values are Nuil, but facilitates random access and
are widely used in real-world applieations: a recent survey showed

tween Canpact and Placeholder layour,
Many DBMSS use a combination of Parquet and Arrow storage
Jp [epresent datn on disk and in-memory, respectively 15,9, 10].

‘ [] Hawever, the different Tepresentation of Nulls between Compact
° u (Parquet) and Placeholder (Arraw) introduces performance over-

] e r . }) head. As shown in Figure 2, the time spent on format conversion

o I c e L] I 3 e oo st oo from Parquet to Arrow, which represents o common deserialization

vestigatior into how to best handle them in & modern e format
that is designed for analytical worklaads processing colummar data.

\/

Mo 24, June 10, 2024, Santiaga, A, Chile —_—
© 2024 Copyright hekd by the owner/mathorgs). uanchen Zhang is oo aflisted with Shanghas 01 Zh nsttute.

¢ — Store a flag that marks that. avaluy oo
q
Don't — Must use more space than just a ¢

Do This! messes up with word alignment.

=”=_‘|| DEPARTMENT OF

COMPUTER SCIENCE

et specify Nells 10 be any puticular placehoer value, bt
and Rust) fill it ey Sully initialsed,

https://db.cs.cmu.edu/papers/2024/zeng-damon24.pdf

Large Values

CREATE TABLE foo (
Most DBMSs do not allow a tuple to id INT PRIMARY KEY,

exceed the size of a single page. data INT,
lcontents TEXT |

)5

To store values that are larger than a
page, the DBMS uses separate Header | INT| INT|size| locgtion |
overflow storage pages.

— Postgres: TOAST (>2KB)
— MySQL: Overflow (>% size of page) Overflow Page
— SQL Server: Overflow (>size of page) LS VARCHAR DATA o—>

Lots of potential optimizations:
— Qverflow Compression, German Strings

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/

—_N
il

External Value Sj

Some systems allow you to store a
large value in an external file.

Treated as a BLOB type.

— Oracle: BFILE data type
— Microsoft: FILESTREAM data type

The DBMS cannot manipulate the

contents of an external file.

— No durability protectiqns.
— No transaction protections.

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears

Catharine van Ingen', Jim Gray'

y
1: Microsoft Research, 2: University of California at Berkeley

sears@cs.berkeley.edu,

M;R»TR~2006-45

ly

April 2006 Revised June 2006

Abstract

Application designers must decide whether to store
large objects (BLOB) in a filesystem or in a database.
Generally, this decision is based on factors such as
application simplicity or manageability. Often, system
performance affects these factors.

Folklore tells us that databases effi. ciently handle
large numbers of small objects, while filesystems are
pore efficient for large objects. Where is the
break-cven point? When is ac essing a BLOB stored
as a file cheaper than accessing a BLOB stored g5 @
database record?

Of course, this depends on the particular
filesystem, database system, and workload in question.
This study shows that when comparing the NTFS file
system and SQL Server 2005 database system on
create, {read, replace}* delete
workload, BLOBs smaller than 256KB are more

this break-even point will vary among different
database systems, filesystems, and workloads,

By measuring the performance of a storage server
workload typical of web applications which use get/put
protocols such as WebDAV [WebDAV], we found that
the break-even point depends on many factors.
However, our experiments suggest that storage age, the
ratio of bytes in deleted or replaced objects to bytes in
live objects, is dominant. As storage age increases,
fragmentation tends to increase. The filesystem we
study has better fragmentation control than the
database we used, sugge: the database system
would benefit from incorporating ideas from filesystem
architecture. Conversely, filesystem performance may
be improved by using database techniques to handle
small files.

Surprisingly, for these studies, when average
object size is held constant, the distribution of object

low ratio of free space to avel
fragmentation and performance degradation,

1. Introduction

Application data objects are getiing larger as digital
media becomes ubiquitous. Furthermore, the
increasing popularity of web services and other
network applications means that systems that once
managed static archives of “fin ed” objects now
Ihanage frequently modified versions of application
data as it is being created and updated. Rager than
updating these objects, the archive either stores
multiple versions of the objects (the V of WebDAY
stands for “versioning”), or simply does wholesale
replacement (as in SharePoint Team Services
[SharePoint]).

Application designers have the choice of storing
large objects as files in the filesystem, as BLOBs
(binary large objects) in a database, or as a
combination of both, Only folklore is g vailable
regarding the tradeoffs — often the design decision is
based on which technology the designer knows best,
Most designers will tell you that a database is probably
best for small binary objects and that that files are best
jects. But, what is the break-even point?

are the tradeoffs?

This article characterizes the performance of an
abstracted write-intensive web application that deals
Vith relatively large objects. Two versions of the
system are compared: one uses a relational database 1o
store large objects, while the other version stores the
objects as files in the filesystem. We measure how
performance changes over time as the storage becomes
fragmented. The article concludes by describing and
Quanifying the factors that a designer should consider
when picking a storage system. It also suggests
filesystem and database mprovements for large object
support.

One surprising (to us at least) conclusion of our
work is that storage fragmentation is the main
determinant of the break-even point in the tradeoff.
Therefore, much of our work and much of this article
focuses on Storage fragmentation issues. In essence,
filesystems seem to have better fragmentation handling
than databases and this drives the break-cven point
down from about IMB to about 256KB.

UNC

I)EI’«’\I{TMENT‘()F B
COMPUTER SCIENCE

https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/

25

The Trouble with Tuples

. —
o
S
W
B
" TR
S
&l
“ /
h
-

Tuple-oriented Storage

Problem #1: Fragmentation
— Pages are not fully utilized (unusable space, empty
slots).

Problem #2: Useless Disk 1/0

— DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk 1/0

— Worse case scenario when updating multiple tuples is
that each tuple is on a separate page.

What if the DBMS cannot overwrite data in

pages and could only create new pages?
— Examples: Some object stores, HDFES, Google Colossus

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

Log-structured Storage

Instead of storing tuples in pages and updating
them in-place, the DBMS maintains a log that

records changes to tuples.

— Each log entry represents a tuple PUT/DELETE operation.
— Originally proposed as log-structure merge trees (LSM

Trees) in 1996.

The DBMS applies changes to an in-memory data
structure (MemTable) and then writes out the
changes sequentially to disk (SSTable).

https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree
https://en.wikipedia.org/wiki/Log-structured_merge-tree

Log-structured Storage

Pumﬁegnq‘nm,) B VemTable SSTable
C1J
SummaryTable PUT (key1@1,a,)
e Min/Max Key : \ 4 1 A] » PUT (key1 @2,b1)
Per SSTable] PUT (key103,c,)
* Key Filter
Per Level I[]|[) L1J I

Memory ® ‘
> Level #0 | sSTable SSTable Neweste Oldest
|]

|
> Level #1 SSTable

| J
1

> Level #2 SSTable

Log-structured Storage

Key-value storage that appends log
records on disk to represent changes
to tuples (PUT, DELETE).

— Each log record must contain the tuple's
unique identifier.

— Put records contain the tuple contents.

— Deletes marks the tuple as deleted.

DEL (key100)

PUT (key101,a;)

PUT (key102,D,)

PUT (key103,c,)

As the application makes changes to
the database, the DBMS appends log
records to the end of the file without

checking previous log records.

Log-structured Compaction

Periodically compact SSTAbles to reduce wasted

space and speed up reads.
— Only keep the "latest" values for each key using a sort-
merge algorithm.

® ssTable E ssTable ® SSTable
DEL (key100) PUT (keyl01,a,) DEL (key100)
PUT (key101,a;) PUT (keyl102,b,) PUT (key101,a;)
PUT (key102,b,) + DEL (key103) » PUT (key102,b,)
PUT (keyl@3,c,) PUT (keyl104,d,) PUT (keyl103,c,)
PUT (key104,d,)

™ UNC Newest-Oldest

Discussion

Log-structured storage managers are more

common today than in previous decades.
— This is partly due to the proliferation of RocksDB.

i RocksDB @Ieveloa

HERSE O weeee Yfguna PTIDB 1 ClickHouse
¥ CockroachDB ~ 4%0& cassandra ~ WIREDTIGER E NEON

What are some downsides of this approach?
— Read Amplification

— Write Amplification

— Compaction is Expensive

COMPUTER SCIENCE

Conclusion

Log-structured storage is an alternative approach

to the tuple-oriented architecture.
— |deal for write-heavy workloads because it maximizes
sequential disk /0.

Next Class

How to make pages stored on disk available in
memory? The buffer pool manager!

COMPUTER SCIENCE

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: P0 Postmortem
	Slide 4: Bootcamp 1 Postmortem
	Slide 5: Last Class
	Slide 6: Disk-oriented DBMS
	Slide 7: Slotted Pages
	Slide 8: Record IDs
	Slide 9: Tuple-oriented Storage
	Slide 10: Today's Agenda

	Data Representation
	Slide 11: Tuple Storage
	Slide 12: Data Layout
	Slide 13: Word-aligned Tuples
	Slide 14: Word-alignment: Padding
	Slide 15: Word-alignment: Reordering
	Slide 16: Data Representation
	Slide 17: Variable Precision Numbers
	Slide 18: Variable Precision Numbers
	Slide 19: Variable Precision Numbers
	Slide 20: Fixed Precision Numbers
	Slide 21: Postgres: NUMERIC
	Slide 22: NULL Data Types
	Slide 23: Large Values
	Slide 24: External Value Storage

	Log-Structured
	Slide 25: The Trouble with Tuples
	Slide 26: Tuple-oriented Storage
	Slide 27: It's Log!
	Slide 28: Log-structured Storage
	Slide 29: Log-structured Storage
	Slide 30: Log-structured Storage
	Slide 31: Log-structured Compaction
	Slide 32: Discussion

	Conclusion
	Slide 38: Conclusion
	Slide 39: Next Class

