
COMP 421: Files & Databases

Lecture 4: It's log!



Announcements

Project 1: Buffer Pool Manager

will be released this afternoon

Important Dates:

• Buffer pool manager lecture [9/10]

• Bootcamp 2 [9/16, 9/17]

• Project 1 Due [9/29], late days allowed

• Read the description, start early, come to OH
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P0 Postmortem

• Median was 100, Mean was 91.7

• Some FAQs
• devcontainer?
• Where does my code go?
• Build/debug/test?

• Mostly, we wanted you to figure this out, going 
forward, we'll be better about file paths

• Formatting issues
• See writeup, make targets for formatting
• Some Windows users had issues, check VS Code settings

• If you start early and come to OH, we can help!
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Bootcamp 1 Postmortem

• Bootcamp 2 will be longer so we don't rush
• 1.5 hours, rooms TBD

• More interactive, more demos, more writing code

• Not an explicit walkthrough of P1, but highly 
related
• If you have read and started P1, you will get more out of 

Bootcamp
• We can answer specific C++ questions
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Last Class

We presented a disk-oriented architecture where 
the DBMS assumes that the primary storage 
location of the database is on non-volatile disk.

We then discussed a page-oriented storage 
scheme for organizing tuples across heap files.

We had just gotten to talking about how to 
organize bytes within a page...
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Slotted Pages

The most common layout scheme is 
called slotted pages.

The slot array maps "slots" to the 
tuples' starting position offsets.

The header keeps track of:
→ The # of used slots
→ The offset of the starting location of the 

last slot used.
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Tuple Data

Slot Array
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Record IDs

The DBMS assigns each logical tuple 
a unique record identifier that 
represents its physical location in the 
database.
→ File Id, Page Id, Slot #
→ Most DBMSs do not store ids in tuple.
→ SQLite uses ROWID as the true primary 

key and stores them as a hidden 
attribute.

Applications should never rely on 
these IDs to mean anything.

CTID (6-bytes)

ROWID (10-bytes)

ROWID (8-bytes)
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%%physloc%% (8-bytes)

https://www.sqlite.org/rowidtable.html


Tuple-oriented Storage

Insert a new tuple:
→ Check page directory to find a page with a free slot.
→ Retrieve the page from disk (if not in memory).
→ Check slot array to find empty space in page that will fit.

Update an existing tuple using its record id:
→ Check page directory to find location of page.
→ Retrieve the page from disk (if not in memory).
→ Find offset in page using slot array.
→ If new data fits, overwrite existing data.

Otherwise, mark existing tuple as deleted and insert 
new version in a different page.
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Today's Agenda

Tuple Structure

Log-Structured Storage
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Tuple Storage

A tuple is essentially a sequence of bytes prefixed 
with a header that contains meta-data about it.

It is the job of the DBMS to interpret those bytes 
into attribute types and values.

The DBMS's catalogs contain the schema 
information about tables that the system uses to 
figure out the tuple's layout.
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Data Layout
12

CREATE TABLE foo (
  id INT PRIMARY KEY,
  value BIGINT
);

header id value

unsigned char[]

reinterpret_cast<int32_t*>(address)



Word-aligned Tuples

All attributes in a tuple must be word aligned to 
enable the CPU to access it without any 
unexpected behavior or additional work.
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CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

id cdate c zipc

unsigned char[]



Word-alignment: Padding

Add empty bits after attributes to ensure that 
tuple is word aligned. Essentially round up the 
storage size of types to the next largest word size.
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id cdate zipc
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CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

64-bit Word 64-bit Word 64-bit Word64-bit Word

32-bits

64-bits

16-bits

32-bits



id cdate c zipc

Word-alignment: Reordering

Switch the order of attributes in the tuples' 
physical layout to make sure they are aligned.
→ May still have to use padding to fill remaining space.
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CREATE TABLE foo (

  id INT PRIMARY KEY,

  cdate TIMESTAMP,

  color CHAR(2),  

  zipcode INT

);

32-bits

64-bits

16-bits

32-bits 64-bit Word 64-bit Word 64-bit Word64-bit Word

000000000000
000000000000 
000000000000
000000000000

32-bits

64-bits

16-bits

32-bits



Data Representation

INTEGER/BIGINT/SMALLINT/TINYINT
→ Same as in C/C++.

FLOAT/REAL vs. NUMERIC/DECIMAL
→ IEEE-754 Standard / Fixed-point Decimals.

VARCHAR/VARBINARY/TEXT/BLOB
→ Header with length, followed by data bytes OR pointer 

to another page/offset with data.
→ Need to worry about collations / sorting.

TIME/DATE/TIMESTAMP/INTERVAL
→ 32/64-bit integer of (micro/milli)-seconds since Unix 

epoch (January 1st, 1970).

16



Variable Precision Numbers

Inexact, variable-precision numeric type that uses 
the "native" C/C++ types.

Store directly as specified by IEEE-754.
→ Example: FLOAT, REAL/DOUBLE

These types are typically faster than fixed 
precision numbers because CPU ISA's (Xeon, Arm) 
have instructions / registers to support them.

But they do not guarantee exact values…
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Variable Precision Numbers

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %.20f\n", x+y);
    printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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Variable Precision Numbers

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %f\n", x+y);
    printf("0.3 = %f\n", 0.3);
}

Rounding Example

x+y = 0.300000
0.3 = 0.300000

Output

#include <stdio.h>

int main(int argc, char* argv[]) {
    float x = 0.1;
    float y = 0.2;
    printf("x+y = %.20f\n", x+y);
    printf("0.3 = %.20f\n", 0.3);
}

x+y = 0.30000001192092895508
0.3 = 0.29999999999999998890
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Fixed Precision Numbers

Numeric data types with (potentially) arbitrary 
precision and scale. Used when rounding errors 
are unacceptable.
→ Example: NUMERIC, DECIMAL

Many different implementations.
→ Example: Store in an exact, variable-length binary 

representation with additional meta-data.
→ Can be less expensive if the DBMS does not provide 

arbitrary precision (e.g., decimal point can be in a 
different position per value).
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Postgres: NUMERIC

typedef unsigned char NumericDigit;

typedef struct {

  int ndigits;

  int weight;

  int scale;

  int sign;

  NumericDigit *digits;

} numeric;

# of Digits

Weight of 1st Digit

Scale Factor

Positive/Negative/NaN

Digit Storage
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NULL Data Types

Choice #1: Null Column Bitmap Header
→ Store a bitmap in a centralized header that specifies what 

attributes are null.
→ This is the most common approach in row-stores.

Choice #2: Special Values
→ Designate a placeholder value to represent NULL for a data 

type (e.g., INT32_MIN). More common in column-stores.

Choice #3: Per Attribute Null Flag
→ Store a flag that marks that a value is null.
→ Must use more space than just a single bit because this 

messes up with word alignment.
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Do This!

https://db.cs.cmu.edu/papers/2024/zeng-damon24.pdf


Large Values

Most DBMSs do not allow a tuple to 
exceed the size of a single page.

To store values that are larger than a 
page, the DBMS uses separate 
overflow storage pages.
→ Postgres: TOAST (>2KB)
→ MySQL: Overflow (>½ size of page)
→ SQL Server: Overflow (>size of page)

Lots of potential optimizations:
→ Overflow Compression, German Strings
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Overflow Page

VARCHAR DATA

Tuple

Header INT INT TEXTsize location

CREATE TABLE foo (
  id INT PRIMARY KEY,
  data INT,
  contents TEXT
);

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DEFAULT-TOAST-COMPRESSION
https://cedardb.com/blog/german_strings/


External Value Storage

Some systems allow you to store a 
large value in an external file.
Treated as a BLOB type.
→ Oracle: BFILE data type
→ Microsoft: FILESTREAM data type

The DBMS cannot manipulate the 
contents of an external file.
→ No durability protections.
→ No transaction protections.
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https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/


The Trouble with Tuples
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Tuple-oriented Storage

Problem #1: Fragmentation
→ Pages are not fully utilized (unusable space, empty 

slots).

Problem #2: Useless Disk I/O
→ DBMS must fetch entire page to update one tuple.

Problem #3: Random Disk I/O
→ Worse case scenario when updating multiple tuples is 

that each tuple is on a separate page.

What if the DBMS cannot overwrite data in 
pages and could only create new pages?
→ Examples: Some object stores,  HDFS, Google Colossus

26

https://en.wikipedia.org/wiki/Apache_Hadoop#HDFS
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It's Log!
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Log-structured Storage

Instead of storing tuples in pages and updating 
them in-place, the DBMS maintains a log that 
records changes to tuples.
→ Each log entry represents a tuple PUT/DELETE operation.
→ Originally proposed as log-structure merge trees (LSM 

Trees) in 1996. 

The DBMS applies changes to an in-memory data 
structure (MemTable) and then writes out the 
changes sequentially to disk (SSTable).
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MemTable

Log-structured Storage
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Log-structured Storage

Key-value storage that appends log 
records on disk to represent changes 
to tuples (PUT, DELETE).
→ Each log record must contain the tuple's 

unique identifier.
→ Put records contain the tuple contents.
→ Deletes marks the tuple as deleted.

As the application makes changes to 
the database, the DBMS appends log 
records to the end of the file without 
checking previous log records.
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Log-structured Compaction

Periodically compact SSTAbles to reduce wasted 
space and speed up reads.
→ Only keep the "latest" values for each key using a sort-

merge algorithm.
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Discussion

Log-structured storage managers are more 
common today than in previous decades.
→ This is partly due to the proliferation of RocksDB.

What are some downsides of this approach?
→ Read Amplification
→ Write Amplification
→ Compaction is Expensive
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Conclusion

Log-structured storage is an alternative approach 
to the tuple-oriented architecture.
→ Ideal for write-heavy workloads because it maximizes 

sequential disk I/O.
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Next Class

How to make pages stored on disk available in 
memory?  The buffer pool manager!
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