
COMP 421: Files & Databases

Lecture 5: Buffer Pool Manager

Last Class

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

2

Database Storage

Spatial Control:
→ Where to write pages on disk.
→ The goal is to keep pages that are used together often as

physically close together as possible on disk.

Temporal Control:
→ When to read pages into memory, and when to write

them to disk.
→ The goal is to minimize the number of stalls from having

to read data from disk.

3

Disk-oriented DBMS

Disk

Memory

D
a

ta
b

a
se

 F
ile

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
o

o
l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

4

Frames2
Header

Disk-oriented DBMS

Disk

Memory

D
a

ta
b

a
se

 F
ile

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
o

o
l

4
Header

5
Header

Get Page #2

Directory

Execution
Engine

5

Frames3
Header

2
Header

1
Header

Other Memory Pools

The DBMS needs memory for things other than
just tuples and indexes.

These other memory pools may not always
backed by disk. Depends on implementation.
→ Sorting + Join Buffers
→ Query Caches
→ Maintenance Buffers
→ Log Buffers
→ Dictionary Caches

6

Today's Agenda

Buffer Pool Manager

Why mmap Will Murder Your DBMS

Disk I/O Scheduling

Replacement Policies

Optimizations

7

Buffer Pool Organization

Memory region organized as an
array of fixed-size pages.
An array entry is called a frame.

When the DBMS requests a page, an
exact copy is placed into one of
these frames.

When page is written in memory, it
is marked "dirty"

• Dirty pages are buffered and not
written to disk immediately

• Write-Back Cache

Buffer
Pool

frame1

frame2

frame3

frame4

page1

page3

On-Disk File

page1 page2 page3 page4

8

frame1

frame2

frame3

frame4

Buffer Pool Metadata

The page table keeps track of pages
that are currently in memory.
→ Usually a fixed-size hash table protected

with latches to ensure thread-safe
access.

Additional meta-data per page:
→ Dirty Flag
→ Pin/Reference Counter
→ Access Tracking Information

On-Disk File

Buffer
Pool

page1

page3

Page
Table

page2
meta-data

page2

9

page1 page2 page3 page4

page1
meta-data

page3
meta-data

Locks vs. Latches

Locks:
→ Protects the database's logical contents from other

transactions.
→ Held for transaction duration.
→ Need to be able to rollback changes.

Latches:
→ Protects the critical sections of the DBMS's internal data

structure from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

←Mutex

10

Page Table vs. Page Directory

The page directory is the mapping from page ids
to page locations in the database files.
→ All changes must be recorded on disk to allow the DBMS

to find on restart.

The page table is the mapping from page ids to a
copy of the page in buffer pool frames.
→ This is an in-memory data structure that does not need

to be stored on disk.

11

The Dark Side
12

Virtual
Memory

0x3

0x1

0x2

0x4

Virtual Memory Crash Course

This is not a full intro! Take COMP 530!

Main purpose is to create indirection
between "virtual" (logical) memory
addresses and "physical" memory

• Ease of programming
• Process isolation/security

One of the great ideas in CS systems,
beyond the scope of COMP 421

13

Extra "swap" space on disk

Physical
Memory

0x10x1

0x3

0x2

0x3

0x30x2

Virtual Memory Crash Course

This is not a full intro! Take COMP 530!

Main purpose is to create indirection
between "virtual" (logical) memory
addresses and "physical" memory

• Ease of programming
• Process isolation/security

One of the great ideas in CS systems,
beyond the scope of COMP 421

14

Physical
Memory

0x1

0x30x2

Virtual
Memory

0x3

0x1

0x2

0x4

0x1

0x2

0x1

0x2

0x1

0x3

0x2

0x4

0x2

Why Not Use The OS?

Use OS memory mapping (mmap) to
store the contents of a file into the
address space of a program.

OS is responsible for moving file
pages in and out of memory, so the
DBMS doesn't need to worry about it.

What if DBMS allows multiple threads
to access mmap files to hide page fault
stalls?

15

page1 page2 page3 page4

On-Disk File

Virtual
Memory

page1

page2

page3

page4

Physical
Memory

page1

page3???
page1

page3

Memory Mapped I/O Problems

Problem #1: Transaction Safety
→ OS can flush dirty pages at any time.

Problem #2: I/O Stalls
→ DBMS doesn't know which pages are in memory. The OS

will stall a thread on page fault.

Problem #3: Error Handling
→ Difficult to validate pages. Any access can cause a

SIGBUS that the DBMS must handle.

Problem #4: Performance Issues
→ OS data structure contention. (also, TLB shootdowns.)

16

Why Not Use The OS?

There are some solutions to some of
these problems:
→ madvise: Tell the OS how you expect to

read certain pages.
→ mlock: Tell the OS that memory ranges

cannot be paged out.
→ msync: Tell the OS to flush memory

ranges out to disk.

Using these syscalls to get the OS to
behave correctly is just as onerous
as managing memory yourself.

Full Usage

Partial
Usage

17

18

Why Not Use The OS?

DBMS (almost) always wants to control things
itself and can do a better job than the OS.
→ Flushing dirty pages to disk in the correct order.
→ Specialized prefetching.
→ Buffer replacement policy.
→ Thread/process scheduling.

The OS is not your friend.

https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022
https://db.cs.cmu.edu/mmap-cidr2022
https://db.cs.cmu.edu/mmap-cidr2022

Buffer Replacement Policies

When the DBMS needs to free up a frame to
make room for a new page, it must decide which
page to evict from the buffer pool.

Goals:
→ Correctness
→ Accuracy
→ Speed
→ Meta-data overhead

19

page1 page0 page2

Least Recently Used (LRU)

Maintain a single timestamp of
when each page was last accessed.
When the DBMS needs to evict a
page, select the one with the oldest
timestamp.
→ Keep the pages in sorted order to reduce

the search time on eviction.

20

Disk Pages

page0

page1

page2

page3

page4

page5

page0 page1 page2

Newest←Oldest

LRU List

Q1

CLOCK

Approximation of LRU that does not
need a separate timestamp per
page.
→ Each page has a reference bit.
→ When a page is accessed, set its bit to 1.

Organize pages in a circular buffer
with a "clock hand" that sweeps
over pages in order:
→ As the hand visits each page, check if its

bit is set to 1.
→ If yes, set to zero. If no, then evict.

page1

page3

page4 page2

ref=0ref=1

ref=0

ref=0ref=1

ref=0ref=1
page5

21

Observation

LRU + CLOCK replacement policies are susceptible
to sequential flooding.
→ A query performs a sequential scan that reads every

page in a table one or more times (e.g., blocked nested-
loop joins).

→ This pollutes the buffer pool with pages that are read
once and then evicted

For scanning workloads, the most recently used
page is often the best page to evict.

LRU + CLOCK only tracks when a page was last
accessed, but not how often a page is accessed.

22

Buffer Pool

page0

page1

page2

Sequential Flooding

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT * FROM A WHERE id = 1Q1

SELECT AVG(val) FROM AQ2 Q1

page3

Q2

SELECT * FROM A WHERE id = 1Q3

Q2

23

Better Policies: LRU-K

Track the history of last K references to
each page as timestamps and compute the
interval between subsequent accesses.
→ Can distinguish between reference types

Use this history to estimate the next time
that page is going to be accessed.
→ Replace the page with the oldest "K-th" access.
→ Balances recency vs. frequency of access.
→ Maintain an ephemeral in-memory cache for

recently evicted pages to prevent them from
always being evicted.

24

https://doi.org/10.1145/170036.170081

MySQL: Approximate LRU-K

Single LRU linked list but with two
entry points ("old" vs "young").
→ New pages are always inserted to the

head of the old list.
→ If pages in the old list is accessed again,

then insert into the head of the young
list.

25

Disk Pages

page0

page1

page2

page3

page4

page5
Newest←Oldest

Young List

Q1

page6 page2 page8page9 page3page5page4

Old List

page1 page6 page2

Q2

page3

HEAD HEAD

page5 page9page4page1

Better Policies: Localization

The DBMS chooses which pages to evict on a per
query basis. This minimizes the pollution of the
buffer pool from each query.
→ Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of
buffer pool pages to a query and uses it as a
circular ring buffer.

26

https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

Better Policies: Priority Hints

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether
a page is important or not.

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A WHERE id = ?Q2

INSERT INTO A VALUES (id++)Q1

MIN MAXid

27

Dirty Pages

Fast Path: If a page in the buffer pool is not dirty,
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus writing
dirty pages that will not be read again in the
future.

28

Background Writing

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that the system writes dirty
pages in a safe order

• Need to able to recover from a crash
• How would I transfer $$$ from one account to another?

29

Observation

OS/hardware tries to maximize disk bandwidth by
reordering and batching I/O requests.

But they do not know which I/O requests are
more important than others.

Many DBMSs tell you to switch Linux to use the
deadline or noop (FIFO) scheduler.
→ Example: Oracle, Vertica, MySQL

30

https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html#GUID-B59FCEFB-20F9-4E64-8155-7A61B38D8CDF
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

Disk I/O Scheduling

The DBMS maintains internal queue(s) to track
page read/write requests from the entire system.

Compute priorities based on several factors:
→ Sequential vs. Random I/O
→ Critical Path Task vs. Background Task
→ Table vs. Index vs. Log vs. Ephemeral Data
→ Transaction Information
→ User's performance targets

The OS doesn't know these things and is going to
get into the way…

31

OS Page Cache

Most disk operations go through the
OS API. Unless the DBMS tells it not
to, the OS maintains its own
filesystem cache (aka page cache,
buffer cache).

Most DBMSs use direct I/O
(O_DIRECT) to bypass the OS's cache.
→ Redundant copies of pages.
→ Different eviction policies.
→ Loss of control over file I/O.

32

DBMS

Filesystem

OS Page Cache

User-space

Kernel-space

read(...)

A screenshot of a computer

Description automatically generated

https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/

Buffer Pool Optimizations

Multiple Buffer Pools

Pre-Fetching

Scan Sharing

Buffer Pool Bypass

33

Multiple Buffer Pools

The DBMS does not always have a single buffer
pool for the entire system.
→ Multiple buffer pool instances
→ Per-database buffer pool
→ Per-page type buffer pool

Partitioning memory across multiple pools helps
reduce latch contention and improve locality.
→ Avoids contention on LRU tracking metadata.

34

GET RECORD #123Q1

Multiple Buffer Pools

Approach #1: Object Id
→ Embed an object identifier in record ids

and then maintain a mapping from
objects to specific buffer pools.

Approach #2: Hashing
→ Hash the page id to select which

buffer pool to access.
Buffer Pool #1 Buffer Pool #2

<ObjectId, PageId, SlotNum> HASH(123) % n

35

Pre-Fetching

The DBMS can also prefetch pages
based on a query plan.
→ Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty
frames upon start-up.

Buffer Pool

page0

page1

page2

Disk Pages

page0

page1

page2

page3

page4

page5

Q1

page3

page4

page5

36

Pre-Fetching

Buffer Pool

index-page0

index-page1

Disk Pages

index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Q1

index-page0

index-page4index-page1

index-page2 index-page5index-page3 index-page6

SELECT * FROM A
 WHERE val BETWEEN 100 AND 250

Q1

0 99 100 199 200 299 300 399

37

Scan Sharing

Allow multiple queries to attach to a single cursor
that scans a table.
→ Also called synchronized scans.
→ This is different from result caching.

Examples:
→ Fully supported in DB2, MSSQL, Teradata, and Postgres.
→ Oracle only supports cursor sharing for identical queries.

38

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

Buffer Pool

page0

page1

page2

Scan Sharing

Disk Pages

page0

page1

page2

page3

page4

page5

SELECT SUM(val) FROM AQ1

SELECT AVG(val) FROM AQ2
Q1

page3

Q2

Q2

page4

page5

SELECT AVG(val) FROM A LIMIT 100Q2

39

Buffer Pool Bypass

The sequential scan operator will not store
fetched pages in the buffer pool to avoid
overhead.
→ Memory is local to running query.
→ Works well if operator needs to read a large sequence of

pages that are contiguous on disk.
→ Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

40

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

Conclusion

The DBMS can almost always manage memory
better than the OS.

Leverage the semantics about the query plan to
make better decisions:
→ Evictions
→ Allocations
→ Pre-fetching

41

Next Class

Wrapping up storage...

 Column stores and compression

42

Project #1

You will build the first component of
your storage manager.
→ LRU-K Replacement Policy
→ Disk Scheduler
→ Buffer Pool Manager Instance

We will provide you with the basic
APIs for these components.

Due Date:
Sunday Sept 29th @ 11:59pm

43

https://github.com/cmu-db/bustub

Task #1 – LRU-K Replacement Policy

Build a data structure that tracks the usage of
pages using the LRU-K policy.

General Hints:
→ Your LRUKReplacer needs to check the "pinned" status

of a Page.
→ If there are no pages touched since last sweep, then

return the lowest page id.

44

Task #2 – Disk Scheduler

Create a background worker to
read/write pages from disk.
→ Single request queue.
→ Simulates asynchronous IO using

std::promise for callbacks.

It's up to you to decide how you
want to batch, reorder, and issue
read/write requests to the local disk.

Make sure it is thread-safe!

45

Database
(On-Disk)

page0

page1

page2

D
is

k
Sc

h
e

d
u

le
r

Task #3 – Buffer Pool Manager

Use your LRU-K replacer to manage
the allocation of pages.
→ Need to maintain internal data

structures to track allocated + free
pages.

→ Implement page guards.
→ Use whatever data structure you want

for the page table.

Make sure you get the order of
operations correct when pinning!

Buffer Pool
(In-Memory)

page6

page2

page4

46

Database
(On-Disk)

page0

page1

page2

D
is

k
Sc

h
e

d
u

le
r

Things To Note

Do not change any file other than the six that you
must hand in. Other changes will not be graded.

The projects are cumulative.

We will not be providing solutions.

Come to office hours for high-level questions, but
we will not help you debug.

47

Code Quality

We will automatically check whether you are
writing good code.
→ Google C++ Style Guide
→ Doxygen Javadoc Style

You need to run these targets before you submit
your implementation to Gradescope.
→ make format
→ make check-clang-tidy-p1

48

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html
http://www.doxygen.nl/manual/docblocks.html

Extra Credit

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class
will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Student with the most bonus points at the end of
the semester will get some prize TBD

49

	Introduction
	Slide 1
	Slide 2: Last Class
	Slide 3: Database Storage
	Slide 4: Disk-oriented DBMS
	Slide 5: Disk-oriented DBMS
	Slide 6: Other Memory Pools
	Slide 7: Today's Agenda

	Buffer Pool Manager
	Slide 8: Buffer Pool Organization
	Slide 9: Buffer Pool Metadata
	Slide 10: Locks vs. Latches
	Slide 11: Page Table vs. Page Directory

	MMAP
	Slide 12: The Dark Side
	Slide 13: Virtual Memory Crash Course
	Slide 14: Virtual Memory Crash Course
	Slide 15: Why Not Use The OS?
	Slide 16: Memory Mapped I/O Problems
	Slide 17: Why Not Use The OS?
	Slide 18: Why Not Use The OS?

	Buffer Replacement Policies
	Slide 19: Buffer Replacement Policies
	Slide 20: Least Recently Used (LRU)
	Slide 21: CLOCK
	Slide 22: Observation
	Slide 23: Sequential Flooding
	Slide 24: Better Policies: LRU-K
	Slide 25: MySQL: Approximate LRU-K
	Slide 26: Better Policies: Localization
	Slide 27: Better Policies: Priority Hints
	Slide 28: Dirty Pages
	Slide 29: Background Writing

	Disk I/O Scheduling
	Slide 30: Observation
	Slide 31: Disk I/O Scheduling
	Slide 32: OS Page Cache

	Optimizations
	Slide 33: Buffer Pool Optimizations
	Slide 34: Multiple Buffer Pools
	Slide 35: Multiple Buffer Pools
	Slide 36: Pre-Fetching
	Slide 37: Pre-Fetching
	Slide 38: Scan Sharing
	Slide 39: Scan Sharing
	Slide 40: Buffer Pool Bypass

	Conclusion
	Slide 41: Conclusion
	Slide 42: Next Class

	Project #1
	Slide 43: Project #1
	Slide 44: Task #1 – LRU-K Replacement Policy
	Slide 45: Task #2 – Disk Scheduler
	Slide 46: Task #3 – Buffer Pool Manager
	Slide 47: Things To Note
	Slide 48: Code Quality
	Slide 49: Extra Credit

