COMP 421: Files & Databases

Lecture 5: Buffer Pool Manager

COMPUTER SCIENCE

Last Class 2

Problem #1: How the DBMS represents the
database in files on disk.

Problem #2: How the DBMS manages its memory
and move data back-and-forth from disk.

COMPUTER SCIENCE

Database Storage 3

Spatial Control:

— Where to write pages on disk.

— The goal is to keep pages that are used together often as
physically close together as possible on disk.

Temporal Control:

— When to read pages into memory, and when to write
them to disk.

— The goal is to minimize the number of stalls from having
to read data from disk.

COMPUTER SCIENCE

Disk-oriented DBMS

CetPage 7z % Execution
l Pointer to Page #2 a Engine
8 e ry —T —
| [HEE
E || 2 — Frames
S (L]
m ? L
- ;
= : N
W, Directory Hea_a’erl He ade rI Heade rI Heade rI Heade rI
Q I:D:l
S Xy’
S| 1 2 3 4 5 — Pages
S| (LI
b
c —
Q

Disk-oriented DBMS

Get Page #2 o Execution

l ao Engine

8 Directory /-/eaderl /-/eaa’erl T

Q| |CCLl
E Tl 1 2 — Frames
S (L]

& T 1

Directory He ade rI He ade /-'I He ade rI He ade rI Heade rI

2 || 3 || 4| 5 [[Pages

Database File
—

Other Memory Pools 6

The DBMS needs memory for things other than
just tuples and indexes.

These other memory pools may not always

backed by disk. Depends on implementation.
— Sorting + Join Buffers
— Query Caches

— Maintenance Buffers
— Log Buffers

— Dictionary Caches

=)
50

Today's Agenda 7

Buffer Pool Manager

Why mmap Will Murder Your DBMS
Disk I/O Scheduling

Replacement Policies
Optimizations

COMPUTER SCIENCE

Buffer Pool Organization 8

Memory region organized as an

array of fixed-size pages. Buffer
An array entry is called a frame. Pool
When the DBMS requests a page, an E
exact copy is placed into one of By page3 |
these frames. frame3
: frame4

When page is written in memory, it

is marked "dirty"
* Dirty pages are buffered and not
wrl.tten to disk immediately On-Disk File
e Write-Back Cache

pagel page2 page3 page4

Buffer Pool Metadata 9

The page table kegps track of pages Page Buffer
that are currently in memory. Table Pool
— Usually a fixed-size hash table protected
with latches to ensure thread-safe | e pagel
access. »’(”’g’-‘a"g'gia page3
» page2

Additional meta-data per page:
— Dirty Flag

— Pin/Reference Counter

— Access Tracking Information

P

-*

nnnnnnnnnn
.
.
.
.
o

pagel page2 page3 page4
On-Disk File

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

Locks vs. Latches

Locks:

— Protects the database's logical contents from other
transactions.

— Held for transaction duration.

— Need to be able to rollback changes.

Latches:
— Protects the critical sections of the DBMS's internal data
structure from other threads. & Mutex
— Held for operation duration.
— Do not need to be able to rollback changes.

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

COMPUTER SCIENCE

Page Table vs. Page Directory

The page directory is the mapping from page ids

to page locations in the database files.

— All changes must be recorded on disk to allow the DBMS
to find on restart.

The page table is the mapping from page ids to a

copy of the page in buffer pool frames.

— This is an in-memory data structure that does not need
to be stored on disk.

YOU WANT THIS, Illl,ll']; YOU..

Virtual Memory Crash Course

This is not a full intro! Take COMP 530!

Virtual Physical
Main purpose is to create indirection Memory Memory

between "virtual" (logical) memory

0x1 * 0x1
addresses and "physical" memory - -
* Ease of programming
* Process isolation/security 0x3
0x4
One of the great ideas in CS SyStemS, ..
beyond the scope of COMP 421 0x3

Extra "swap" space on disk
@’ %&%&?&cg

Virtual Memory Crash Course

This is not a full intro! Take COMP 530!

Virtual Physical
Main purpose is to create indirection Memory Memory

between "virtual" (logical) memory

0x1 0x1
addresses and "physical" memory - 02
e Ease of programming

* Process isolation/security 0x3 2

0x4 0x2
One of the great ideas in CS systemes, -
beyond the scope of COMP 421 %2
0x3

i 0x4
@ gﬁgT OF

COMPUTER SCIENCE

Why Not Use The OS?

Use OS memory mapping (mmap) to

store the contents of a file into the Virtual Physical
address space of a program. Memory Memory
. . . : pageT > pagel
OSis rgspon5|ble for moving file 2?2? - pabe3
pages in and out of memory, so the / TR
. page3 ;
DBMS doesn't need to worry about it. — ‘
What |f DBMS a”OWS mUIt|p|e threads:,.‘:
to access mmap files to hide page fault pagel || page2 || page3 || pages
? e
stalls: On-Disk File

| UNC
lﬁ DEPARTMENT OF
COMPUTER SCIENCE

COMPUTER SCIENCE

Memory Mapped 1/O Problems

Problem #1: Transaction Safety
— OS can flush dirty pages at any time.

Problem #2: 1/0 Stalls

— DBMS doesn't know which pages are in memory. The OS
will stall a thread on page fault.

Problem #3: Error Handling
— Difficult to validate pages. Any access can cause a
SIGBUS that the DBMS must handle.

Problem #4: Performance Issues
— OS data structure contention. (also, TLB shootdowns.)

Why Not Use The OS?

_ Full Usage
There are some solutions to some of

these problems: mon‘ejtdb) lMDB

— madvise: Tell the OS how you expect to

read certain pages. RAVENDB @ levelpB
— mlock: Tell the OS that memory ranges -
cannot be paged out. & elasticsearch (3 QuestDB

— msync: Tell the OS to flush memory
ranges out to disk.

aviate

Partial
Using these syscalls to get the OS to Usage

behave correctly is just as onerous 0 MoxoDB® O sindtore
as managing memory yourself,

—_N
il

UNC

DEPARTMENT OF
COMPUTER SCIENCE

DBMS (almost) always wa.nts
itself and can do a better job

— Flushing dirty pages to disk in th
— Specialized prefetching:

— Buffer replacement pohgy.

— Thread/process scheduling.

The OS is not your friend.

Andrew Crotty
Carnegie Mellon University
andrewer@cs.cmu.edu

ABSTRACT
Memory-mapped (mmap) file 1/0 is an OS-provided feature that
maps the contents of a file on secondary storage into a program's
address space. The program then accesses Pages via pointers as
ifthe file resided entirely in memory. The 08 transparently loads
Ppages only when the program references them and automatically

eviets pages if memory fills up.
mmap's perceived ease of use has seduced database management
system (DBMS) developers for decades as a viable alternative to
implementing a buffer Pool. There are, however, severe correct-
ness and performance issues with mmap that are not immediately
apparent. Such problems make it difficult, if not impossible. o use
mmap correctly and efficiently in a modem DBMS, In fat, several
popular DBMSs initially used mmap to support larger-than-memory
i erils, forcing them to

Are You Sure You Want to Use MMAP in Your
Database Management System?

Viktor Leis
University of Erlangcn-Nurembcrg
viktorleis@fau.de

Andrew Pavlo
Carnegie Mellon University
Pavlo@cs.cmu.edu

than the DBMS’s buffer pool.

On the surface, mmap seems like an attractive implementation
OPtion for managing file O in a DBMS. The most notable benefits
are ease of use and low engineering cost. The DBMS no longer
needs to track which pages are in memory, nor does it need to track
how often pages are accessed or which pages are dirty. Instead,
the DBMS can simply access disk-resident data via pointers as if
it were accessing data in memory while leaving all low-level page
management to the OS. If the available memory fills up, then the
OS will free space for new pages by transparently evieting (ideally
Pages from the page cache.

switch to managing file 1O th, after significant ng
costs. In this way, mmap and DBMSs are like coffee and spicy food:
an unfc bination that beco, bvious after the fact,

Since developers keep trying to use mnap in new DBMSs, we
wrote this paper to Pprovide a warning to others that mmap is nota
suitable replacement for a traditional buffer pool. We discuss the
main shortcomings of mmap in detail, and our experimental analysis
it clear perfc li ions. Based on these find-
ings, we conclude with a prescription for when DBMS developers
might consider using mnap for file 1/0,

1 INTRODUCTION

in memory, even if it does not fit all at once. DBMSs achieve this
illusion by reading pages of data from secondary storage (e.g.. HDD,
SSD) into memory on demand. If there is not enough memory for a
new page, the DBMS will evict an existing page that is ng longer
needed in order to make room,

Traditi y. DBMSs e the of pages be-
tween secondary storage and memory in a buffer pool, which in-
teracts with secondary storage using system calls like read and
write. These file /O mechanisms copy data to and from a buffer
in user space, with the DBMS maintaining complete control over
how and when it transfers pages.

Alternatively, the DBMS can relinquish the responsibility of data
movement to the OS, which maintai; own file mapping and

rhis papet s published under the Creative Commors AT 40 International
(CCBY 4.0) cense. Authors reserve theirrights to dissemiate e work on their
1 W attribution, provided that you
pubute the original work tothe authors and CIDR 2022, 120 Ay Conference on
Tnmovative Data Systems Research (CIDR '22), January 915, 2025 Chaminade, USA,

From a performance perspective, map should also have much
lower overhead than a traditional buffer pool. Specifically, mmap
does not incur the cost of explicit system calls (ie., read/write)
and avoids redundant copying to.a buffer in user space beeutge the
DBMS can access pages directly from the OS page cache.

Since the early 19805, these supposed benefits have enticed DBMS

performance [20],

Unfortunately, mmap has a hidden dark side with many sordid
problems that make it undesirable for file /O in a DBMS. As we
deseribe in this paper, these problems involve botl, data safety and
system performance concems. We contend that the engineering
steps required to overcome them negate the purported simplicity
of working with mmap, For these reasons, we believe that mmap
adds too much complexity with no commensurate performance
benefit and strongly urge DBMS developers to avoid using mmap as
a replacement for a traditional buffer pool.

The remainder of this paper is organized as follows. We begin
Vith a short background on mmap (Section 2), followed by a discus-
sion of its main problems (Section 3) and our experimental analysis
(Section 4). We then discuss related work (Section 5) and conclude
Witha summary of our guidance for when you might consider using
mmap in your DBMS (Section 6).

2 BACKGROUND

This section provides the relevant background on mmap. we begin
with a high-level overview of memory-mapped file 10 and the
POSIX mmap APL. Then, we discuss real-world implementatign. e
mmap-based systems.

https://db.cs.cmu.edu/mmap-cidr2022/
https://db.cs.cmu.edu/mmap-cidr2022
https://db.cs.cmu.edu/mmap-cidr2022
https://db.cs.cmu.edu/mmap-cidr2022

Buffer Replacement Policies

When the DBMS needs to free up a frame to
make room for a new page, it must decide which
page to evict from the buffer pool.

Goals:

— Correctness

— Accuracy

— Speed

— Meta-data overhead

COMPUTER SCIENCE

Least Recently Used (LRU)

Maintain a single timestamp of
when each page was last accessed.
When the DBMS needs to evict a
page, select the one with the oldest

timestamp.

— Keep the pages in sorted order to reduce
the search time on eviction.

LRU List

page0d

pagel

X

Newest&Oldest
UNC

Disk Pages

pageo

Q1 P

pagel

page2

page3

page4

pageb

CLOCK

Approximation of LRU that does not

need a separate timestamp per

page.

— Each page has a reference bit.

— When a page is accessed, set its bit to 1. ref=0

page4

Organize pages in a circular buffer
with a "clock hand" that sweeps

over pages in order: page3
— As the hand visits each page, check if its ref=0
bit is set to 1.

— If yes, set to zero. If no, then evict.

COMPUTER SCIENCE

COMPUTER SCIENCE

Observation

LRU + CLOCK replacement policies are susceptible

to sequential flooding.

— A query performs a sequential scan that reads every
page in a table one or more times (e.g., blocked nested-
loop joins).

— This pollutes the buffer pool with pages that are read
once and then evicted

For scanning workloads, the most recently used
page is often the best page to evict.

LRU + CLOCK only tracks when a page was last
accessed, but not how often a page is accessed.

Sequential Flooding

Q1 [SELECT * FROM A WHERE id Disk Pages

I
—

Q2 [SELECT AVG(val) FROM A QI* pageo
Q3 [SELECT * FROM A WHERE id = 1 page1
Buffer Pool page2

page2 pageb

Better Policies: LRU-K

Track the history of last K references to
each page as timestamps and compute the ebmintizbre

interval between subsequent accesses.
— Can distinguish between reference types

]
Harbor Campus CH8092 Zarich
Boston, MA 021263303 Swizerlnd

Use this history to estimate the next time

that page is going to be accessed.

— Replace the page with the oldest "K-th" access.

— Balances recency vs. frequency of access.

— Maintain an ephemeral in-memory cache for
recently evicted pages to prevent them from

Microsoft”
always being evicted.)= SQL Server
- PostgreSQL

UN

A

— DEPART
COMPU

SCIENCE

https://doi.org/10.1145/170036.170081

MySQL: Approximate LRU-K

Single LRU linked list but with two Disk Pages
entry points ("old" vs "young").
— New pages are always inserted to the paged
head of the old list.
— |If pages in the old list is accessed again, Q2 pagel
then insert into the head of the young
list. PRI
page3
weao Young List teao Old List
: “IJ = page4
pagel | | page4 |page5 page9 page3 page6 page2| :
| page5
ﬁ %&%&%u

Better Policies: Localization

The DBMS chooses which pages to evict on a per

qguery basis. This minimizes the pollution of the
buffer pool from each query.
— Keep track of the pages that a query has accessed.

Example: Postgres assigns a limited number of
buffer pool pages to a query and uses it as a
circular ring buffer.

COMPUTER SCIENCE

https://www.postgresql.org/docs/devel/glossary.html#GLOSSARY-BUFFER-ACCESS-STRATEGY

Better Policies: Priority Hints

The DBMS knows about the context of each page
during query execution.

It can provide hints to the buffer pool on whether
a page is important or not.

Q1 [INSERT INTO A VALUES (id++)

Q2 [SELECT *» FROM A WHERE id = ? index-page1

index-page6

index-page2|| index-page3||index-page5

COMPUTER SCIENCE

Dirty Pages

Fast Path: If a page in the buffer pool is not dirty,
then the DBMS can simply "drop" it.

Slow Path: If a page is dirty, then the DBMS must
write back to disk to ensure that its changes are
persisted.

Trade-off between fast evictions versus writing
dirty pages that will not be read again in the
future.

COMPUTER SCIENCE

Background Writing

The DBMS can periodically walk through the page
table and write dirty pages to disk.

When a dirty page is safely written, the DBMS can
either evict the page or just unset the dirty flag.

Need to be careful that the system writes dirty
pages in a safe order

e Need to able to recover from a crash
 How would | transfer SSS from one account to another?

Observation

OS/hardware tries to maximize disk bandwidth by
reordering and batching |/O requests.

But they do not know which I/O requests are
more important than others.

Many DBMSs tell you to switch Linux to use the

deadline or noop (FIFO) scheduler.
— Example: Oracle, Vertica, MySQL

COMPUTER SCIENCE

https://docs.oracle.com/en/database/oracle/oracle-database/23/ladbi/setting-the-disk-io-scheduler-on-linux.html#GUID-B59FCEFB-20F9-4E64-8155-7A61B38D8CDF
https://docs.vertica.com/23.3.x/en/setup/set-up-on-premises/before-you-install/manually-configured-os-settings/io-scheduling/
https://dev.mysql.com/doc/refman/8.0/en/innodb-linux-native-aio.html

COMPUTER SCIENCE

Disk 1/0O Scheduling

The DBMS maintains internal queue(s) to track
page read/write requests from the entire system.

Compute priorities based on several factors:
— Sequential vs. Random I/O

— Critical Path Task vs. Background Task

— Table vs. Index vs. Log vs. Ephemeral Data

— Transaction Information

— User's performance targets

The OS doesn't know these things and is going to
get into the way...

A

Krishnakumar R . 3,4, + Follow
O S Pa ge ’ Group Engineerin

g Manager, PostgresqL engine @ Micros...
4mo - @

Direct IO in Postgresqr and double buffering

Most disk operations go through thte
OS API. Unless the DBMS tells it no
to, the OS maintains its own i
filesystem cache (aka page cache,
buffer cache).

the pg buffer pool, and the 1ast
ore utility) shows infg on how much the file corresponding
note: PostgresqL uses fif

es for its data storage) js cached |
hat PG has gk block size whije Kernel has 4k Pages (x64 in

You can s
cached in Page cache,

irect 1/0
Most DBMSs use direc |
(0_DIRECT) to bypass the OS's cach

— Redundant copies of pages.
— Different eviction poI.|C|es.
— Loss of control over file 1/0.

~

OF
DEPARTMENT
COMPUTER SCIENCE

https://linux.die.net/man/2/open
https://www.linkedin.com/posts/krishnakumar-r-bb7b949_postgres-postgresql-kernel-activity-7191224981924552705-i-7R/

Buffer Pool Optimizations

Multiple Buffer Pools
Pre-Fetching

Scan Sharing

Buffer Pool Bypass

COMPUTER SCIENCE

Multiple Buffer Pools

The DBMS does not always have a single buffer

pool for the entire system.
— Multiple buffer pool instances

— Per-database buffer pool ORACLE
— Per-page type buffer pool

/D

N SYBASE

Partitioning memory across multiple pools helps g
reduce latch contention and improve locality. & SQL Server
— Avoids contention on LRU tracking metadata. Informzé(@

Multiple Buffer Pools

Approach #1: Object Id

— Embed an object identifier in record ids Q1 [GET RECORD #123
and then maintain a mapping from :
objects to specific buffer pools. <ObJ?CtIdeBHg‘E‘Ia) ko tNum>

Approach #2: Hashing

— Hash the page id to select which Buffer POOI #1 Buffer POOI #2

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

Pre-Fetching

The DBMS can also prefetch pages Disk Pages
based on a query plan. 01 *

— Examples: Sequential vs. Index Scans

Some DBMS prefetch to fill in empty pg’ée1
frames upon start-up. :

Buffer Pool

page4 4::

page5 o

pageo

COMPUTER SCIENCE

Pre-Fetching

!index-page@!

Q‘] SELECT * FROM A
WHERE val BETWEEN 100 AND 250

=
index-page2 Iindex-page3||index-page5I index-page6

 — »99 100-------- »199 200------- »299 300------- »399
» Buffer Pool
index-page®
index-pagel

COMPUTER SCIENCE

Disk Pages

Q1 * index-page0

index-page1

index-page2

index-page3

index-page4

index-page5

Ter)

F

| UNC
l_ﬁ DEPARTMENT O
COMPUTER SCI

ENCE

Scan Sharing

Allow multiple queries to attach to a single cursor

that scans a table.

— Also called synchronized scans.
— This is different from result caching.

: g spaces, case, and comments. For e
[following statements cannot use the same shared SQL area: xamele. the

SELECT * FROM employees;

SELECT * FROM Employees;
SELECT * FROM employees;
_ ORACLE

- reSQL

https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/improving-rwp-cursor-sharing.html

Scan Sharing

Q1 |SELECT SUM(val) FROM A

Q2 [SELECT AVG(val) FROM A LIMIT 100

Buffer Pool

page4

pageb

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

Q2

Disk Pages

2l

pageo

pagel

page2

page3

page4

pageb

Buffer Pool Bypass

The sequential scan operator will not store

fetched pages in the buffer pool to avoid

overhead.

— Memory is local to running query.

— Works well if operator needs to read a large sequence of
pages that are contiguous on disk.

— Can also be used for temporary data (sorting, joins).

Called "Light Scans" in Informix.

ORACLE 250l server |Nformizx

COMPUTER SCIENCE

https://www.ibm.com/support/knowledgecenter/en/SSGU8G_12.1.0/com.ibm.perf.doc/ids_prf_237.htm

COMPUTER SCIENCE

Conclusion

The DBMS can almost always manage memory
better than the OS.

Leverage the semantics about the query plan to
make better decisions:

— Evictions

— Allocations

— Pre-fetching

Next Class

Wrapping up storage...
Column stores and compression

COMPUTER SCIENCE

Project #1

You will build the first component of

your storage manager.

— LRU-K Replacement Policy
— Disk Scheduler
— Buffer Pool Manager Instance

We will provide you with the basic
APIs for these components.

COMPUTER SCIENCE

BLISTLIb

Due Date:
Sunday Sept 29" @ 11:59pm

https://github.com/cmu-db/bustub

COMPUTER SCIENCE

Task #1 — LRU-K Replacement Policy

Build a data structure that tracks the usage of
pages using the LRU-K policy.

General Hints:
— Your LRUKReplacer needs to check the "pinned" status

of a Page.
— |f there are no pages touched since last sweep, then

return the lowest page id.

Task #2 — Disk Scheduler

Create a background worker to
read/write pages from disk.

— Single request queue. Database
— Simulates asynchronous |0 using (On-Disk)
std: :promise for callbacks. >
» » pageo
It's up to you to decide how you = @ —
want to batch, reorder, and issue » bages

read/write requests to the local disk.
Make sure it is thread-safe!

COMPUTER SCIENCE

Task #3 — Buffer Pool Manager

Use your LRU-K replacer to manage
the allocation of pages.

— Need to maintain internal data Buffer Pool
structures to track allocated + free (In-Memory)
pages.

— Implement page guards.
— Use whatever data structure you want
for the page table.

499

Make sure you get the order of
operations correct when pinning!

COMPUTER SCIENCE

Database
(On-Disk)

pageo

pagel

page2

Things To Note

Do not change any file other than the six that you
must hand in. Other changes will not be graded.

The projects are cumulative.
We will not be providing solutions.

Come to office hours for high-level questions, but
we will not help you debug.

COMPUTER SCIENCE

COMPUTER SCIENCE

Code Quality

We will automatically check whether you are

writing good code.
— Google C++ Style Guide
— Doxygen Javadoc Style

You need to run these targets before you submit

your implementation to Gradescope.

— make format
— make check-clang-tidy-p1

https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html
http://www.doxygen.nl/manual/docblocks.html
http://www.doxygen.nl/manual/docblocks.html

Extra Credit

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class

will receive extra credit for this assignment.

— #1: 50% bonus points
— #2-10: 25% bonus points
— #11-20: 10% bonus points

Student with the most bonus points at the end of
the semester will get some prize TBD

COMPUTER SCIENCE

	Introduction
	Slide 1
	Slide 2: Last Class
	Slide 3: Database Storage
	Slide 4: Disk-oriented DBMS
	Slide 5: Disk-oriented DBMS
	Slide 6: Other Memory Pools
	Slide 7: Today's Agenda

	Buffer Pool Manager
	Slide 8: Buffer Pool Organization
	Slide 9: Buffer Pool Metadata
	Slide 10: Locks vs. Latches
	Slide 11: Page Table vs. Page Directory

	MMAP
	Slide 12: The Dark Side
	Slide 13: Virtual Memory Crash Course
	Slide 14: Virtual Memory Crash Course
	Slide 15: Why Not Use The OS?
	Slide 16: Memory Mapped I/O Problems
	Slide 17: Why Not Use The OS?
	Slide 18: Why Not Use The OS?

	Buffer Replacement Policies
	Slide 19: Buffer Replacement Policies
	Slide 20: Least Recently Used (LRU)
	Slide 21: CLOCK
	Slide 22: Observation
	Slide 23: Sequential Flooding
	Slide 24: Better Policies: LRU-K
	Slide 25: MySQL: Approximate LRU-K
	Slide 26: Better Policies: Localization
	Slide 27: Better Policies: Priority Hints
	Slide 28: Dirty Pages
	Slide 29: Background Writing

	Disk I/O Scheduling
	Slide 30: Observation
	Slide 31: Disk I/O Scheduling
	Slide 32: OS Page Cache

	Optimizations
	Slide 33: Buffer Pool Optimizations
	Slide 34: Multiple Buffer Pools
	Slide 35: Multiple Buffer Pools
	Slide 36: Pre-Fetching
	Slide 37: Pre-Fetching
	Slide 38: Scan Sharing
	Slide 39: Scan Sharing
	Slide 40: Buffer Pool Bypass

	Conclusion
	Slide 41: Conclusion
	Slide 42: Next Class

	Project #1
	Slide 43: Project #1
	Slide 44: Task #1 – LRU-K Replacement Policy
	Slide 45: Task #2 – Disk Scheduler
	Slide 46: Task #3 – Buffer Pool Manager
	Slide 47: Things To Note
	Slide 48: Code Quality
	Slide 49: Extra Credit

