COMP421 Bootcamp

Ben Berg, Zhongrui (reads John-Ray) Chen
Department of Computer Science, University of North Carolina at Chapel Hill

Aug 25, 2025

Plans for the day

- This bootcamp assumes passing familiarity with C and Java.
- We will go over some basic C++ syntax and features.

- Lastly, get your hands dirty on simple C++ tasks.

- Enjoy your food and let’s get started!

What is C++7

> You learned Java in COMP 301
» You learned Cin COMP 211/311
> C++:

v Object-oriented programming from Java
v’ Pointers and efficiency from C

v" A lot more to offer...

C++: Basic Syntax

Return type of the function
void changeName (Person p) {
p.setName ("B") ;

}

.] : : Instantiating an object
Main function int main() { & J

Person p("A", 10);
changeName (p) ;

return 0; Returns O if code finishes without error

Common pitfalls / subtle differences

» Values, references and pointers

» Objects and inheritance

» Threads and locks

C++: What's different?

Difference 1: Reference Types

Passing by copying Passing by reference

void changeName (Person p) { void changeName (Person &p) ({
p.setName ("B") ; p.setName ("B") ;

} }

int main() { int main() {
Person p("A", 10); Person p("A", 10);
changeName (p) ; changeName (p) ;
std::cout << p.getName () << std::endl; std: :cout << p.getName () << std::endl;
// prints "A" // prints "B"
return O; return O;

} }

In Java: only references are passed around In C++: passing reference using Type&

In C: there is no reference type. Pass by pointers (Person*).

C++: What's different?

Difference 2: Polymorphism

class B : public A { class A {
public: public:
B(int num) : num (num) {} void print() {
void print () override { std: :cout << "A" <L std::endl;
std::cout << "B " << num_ << std::endl; }
} }i
private:
} ot num C++: Upcasting works differently from Java. It slices the object.
int main() {
B b =B(1l);
A a = Db;

a.print(); // prints "A"
b.print(); // prints "B 1"
return O;

C++: What's different?

Difference 2: Polymorphism

class A {
public:

void print () {
std: :cout <K "A" <KL std::endl;

) } In Java: any non-static method call is a dynamic dispatch call
class B : public A { In C++: unless specified otherwise, the compiler decides which
public: function to call beforehand.

void print () {
std: :cout << "B" << std::endl;

}
}; C: what is object-oriented design?
int main() {

B b =B();

A & = b;

a.print(); // prints "A"

}

Virtual methods in C++

Difference 2: Polymorphism

class A {
public:
vorduptinti{y Print() {
std: :cout << "A" << std::endl;
}

bi In C++: use ”virtua
class B : public A {
public:
void print() é¢verride ({
std::cout << "B" << std::endl;

I”

keyword to specify dynamic dispatch.

}
};
int main() {

Bb=B();

A & = b;

a.print(); // prints "R"
}

Object-oriented C++: constructor and destructor

C++ Constructor

Initializer list

B(int num, std::string name) : num (num), name (name) {}
When is the constructor called?

Person a("A", 20);
C++ Destructor When is the destructor called?

~B() { Why don’t we have to worry about this in Java?

delete ..;
} Depends on the lifetime of the object.

Difference 3: C++ Object Lifetime

Java: automatically managed lifetime with garbage collection.

Compiler-managed lifetime Manually-managed lifetime
(Stack, AKA automatic storage duration) (Heap, AKA dynamic storage duration)
{ {
Person a("A", 20); Person *pa = new Person("A", 20);
} }
Object a exists only inside the braces Object is accessible outside of the braces
Person b = a; <& Person b = Person(a); Person *pb = pa assigns a memory address

C++ Object Lifetimes

class Person {
public:
Person(std: :string name, int age) : name_(name), age_ (age) {}
~Person () {
std: :cout << "destructor called" << std::endl;

}

private:
std: :string name_;
int age_ ;

};

Heap allocated new Person ("A", 20); Live until deleted ~Person () called on deletion

Stack allocated Person a("A", 20); Live until out of scope ~Person () called when out of scope

- k4 L4

See objects.cpp in bsb20/421-bootcamp for more examples

What’s wrong with C?

void memory leak function() {

int *ptr = (int *) malloc(sizeof (int)) ;
*ptr = 10; *ptr not accessible outside of this function
} Issue: the memory it points to is not getting deallocated

int main() {
for (int 1 = 0; i < 1000; i++) memory leak function() ;

int *a = (int*) malloc(sizeof (int) * 5);

int *b = a;

free(a); b points to deallocated memory! Undefined behavior.
return O;

}

Original C++ solution: new and delete with object destructors @

Modern C++ solution: STL containers (today) and smart pointers (next)

C++ Arrays (in containers)

C++ Java

Containers deallocate the memory on their destructors

C++ unordered _map

std: :unordered map<std::string, int> student grades;
student grades["B"] = 101;

std::cout << student grades["B"] << std::endl; insert one/more mappings into the map
student grades.insert({{"E", 103}, {"F", 104}, {"G", 105}});

if (student grades.count("C") == 0) {

how to tell if a key is in the map
std: :cout << "No student named C" << std::endl;

}
for (auto &pair : student grades) ({ Iterating over an unordered_map

std::cout << pair.first << " " << pair.second << std::endl;

Task

Given a string of words separated by a single space, count word frequencies.
See the following example

- Example Input:

- the quick brown fox jumps over the lazy dog the quick fox

- Example Output:

Word Frequencies:
"lazy": 1

"jumps”: 1

"dog": 1

"the": 3

"fox": 2

"brown": 1

"over": 1

"quick"; 2

Threads

- Parallel execution units that shares memory

- Next: Threads in C++

Threads without locks

int count = 0;

std: :mutex m;

void add count() {
count += 1;

}

int main() {
std: :thread tl (add count);
std: :thread t2(add count);

tl.join() ; What is the output?
t2.join() ;
std: :cout << "Printing count: " << count << std::endl;
return O;

} Possible scenario:

Thread t1 and t2 reads count as 0 at the same time.
Thread t1 and t2 trying to set count to 1 at the same time.
count becomes 1 after execution when we want 2.

Thread Synchronization

int count = 0; Solution: mutual exclusion lock
std: :mutex m;

void add count() {
- class scoped lock {

{ scoped lock (std::mutex &m) : m (m) {
std: :scoped lock lock(m); m.lock () ; -
count += 1; }

} ~scoped lock() {

} m .unlock() ;
int main() { }

std: :mutex& m ;

std: :thread tl (add count);
std: :thread t2(add count);
tl.join() ;

t2.join() ;

std: :cout << "Printing count: " << count << std::endl;
return O;

};

	Slide 1: COMP421 Bootcamp
	Slide 2: Plans for the day
	Slide 3: What is C++?
	Slide 4: C++: Basic Syntax
	Slide 5: Common pitfalls / subtle differences
	Slide 6: C++: What’s different?
	Slide 7: C++: What’s different?
	Slide 8: C++: What’s different?
	Slide 9: Virtual methods in C++
	Slide 10: Object-oriented C++: constructor and destructor
	Slide 11: Difference 3: C++ Object Lifetime
	Slide 12: C++ Object Lifetimes
	Slide 13: What’s wrong with C?
	Slide 14: C++ Arrays (in containers)
	Slide 15: C++ unordered_map
	Slide 16: Task
	Slide 17: Threads
	Slide 18: Threads without locks
	Slide 19: Thread Synchronization

