COMP 421: Files & Databases

Fall 2025, Instructor Benjamin Berg, COMP421.001.FA25

Final Exam

Name:

PID:

ONYEN:
Question Points Recvd / Points Possible
Q1: Mult. Choice /10
Q2: Query Execution /20
Q3: Concurrency Control /25
Q4: MVCC /20
Q5: Logging + Recovery /25
TOTAL /100

This is your final exam. There are many like it, but this one is yours. There are 5 questions,
each with several parts/sub-questions. Detailed point values are given for each part in the
exam. We do not intend this exam to take the full three-hour period, but you are welcome to
use the full three hours if you like. Note the point values and don’t get bogged down on any one
question.

Before you begin, please read and sign:

In accordance with the UNC honor code, | certify that | will not give or receive help on
this closed-book exam. No calculators, computers, or mobile devices of any kind are
allowed. You may have unlimited blank paper for calculations or extended answers.

Mark any extended answers clearly. Name:

Part I. Multiple Choice

Each question is worth 2 points.

Q1. Consider a database table
Order(o_id, customer_id, order_date, total_amount),

You need to optimize for the following workload

- Lookup a specific order by o_id

- Range query: Find orders placed in a specific date range

- Ordered Lookup: Find the 10 most recent orders for a specific customer
You can choose exactly one index for this table. Which choice offers the best overall
performance?

A. Hash table index on customer _id

B. B+ Tree index on total_amount

C. B+ Tree index on (customer_id, order_date)
D. Hash table index on order_date

Q2. Consider a table Price(item, value), where two transactions T1 and T2 execute the
following schedule:

Time | Transaction T1 Transaction T2 Value of A
1 READ(A) 1.00
2 READ(A) 1.00
3 WRITE(A, 2.00) 2.00
4 COMMIT 2.00
5 READ(A) 2.00

T1 sees inconsistent values between steps 1 and 5. Which isolation guarantee is violated in this
example?

A. Conflict serializability

B. View serializability

C. Snapshot isolation

D. All of the above

Q3. A DBMS uses a buffer pool and write-ahead logging (WAL) with:
- STEAL: Dirty pages from uncommitted transactions may be written to disk.
- NO-FORCE: At commit, not all updated pages are guaranteed to be on disk.

When the database crashes, which of the following operations needs to take place?

A. Rollback uncommitted transactions that were active at the time of the crash

B. Rollback committed transactions whose commit records were in the WAL but that still had
dirty pages in the buffer pool at the time of the crash

C. Rollback any Compensation Log Records (CLRs) for transactions that were being undone at
the time of the crash

D. Rollback all transactions that were committed before the most recent checkpoint

Q4. You are doing an external merge sort on a dataset that is 10 times larger than memory.
What will be the effect of doubling the number of buffer pages used, B?

A. It increases the 1/O cost by writing bigger chunks to disk

B. It completely removes the need for a merge phase

C. It creates larger initial sorted runs, reducing the number of runs to merge
D. It only helps CPU cache behavior and does not affect I/0

Q5. Consider the SQL query:

SELECT =*

FROM Orders O

JOIN Customers C ON O.cust_id = C.id
WHERE C.region = ‘US’;

Which query plan is usually the most efficient?

A. Join O and C first, then filter C.region = ‘US’

B. Filter Orders on O.num_items first, then join with all Customers

C. Replace the join with a cross product and apply the join condition at the end
D. Filter Customers on region = ‘US’ first, then join with O

Part 1. Query Execution and Optimization

Q1. Compare the iterator execution model (e.g., SQLite/PostgreSQL) and the vectorized
execution model (e.g., DuckDB). Which model tends to be faster on large analytical scans, and
why? (4 pts)

Q2. Your database executes the following query:

SELECT A.id, B.name
FROM A JOIN B ON A.id = B.id
WHERE B.score > 90;

You notice that the optimizer plans on using a block nested-loop join, but you think that a simple
hash join would work better.

(i) If a B+ Tree index exists on B.id, why might you not prefer an index nested loop join to a hash
join? (2 pts)

(i) Describe what happens during the Build Phase of the hash join versus what happens during
the Probe Phase? (3 pts)

(iii) In the iterator execution model, why is the build phase of a hash join considered a “pipeline
breaker’? (3 pts)

Q3. Consider a database table
Students(sid, name, age, dept),
where we run a SQL query:

SELECT sid, name

FROM Students

WHERE dept = 'CS' AND age < 25;

Assume there is a B+-tree index on Students.dept, but no index on Students. age.
SQLite’s operators follow these notations:

e SeqgScan_R for a full table scan over relation R
IndexScan_R(X = v) for an index-based access using attribute X
o_{predicate} for selection
m_{attributes} for projection

SQLite might choose the following logical query plan:

1_{sid, name}
|
o_{dept ='CS' A age < 25}

|
SeqScan_Students

(i) Describe the steps in the above logical plan, and why this is inefficient in this case. (2 pts)

(ii) Using the operator notation defined above, draw a more efficient operator tree, and briefly
justify why your plan is more efficient than the logical plan above. (3 pts)

(iii) If we instead had separate B+Tree indexes on both Students.dept, and Students. age,
explain how a bitmap index scan in PostgreSQL can efficiently answer queries such as this that
have multiple predicates. (3 pts)

Part Ill. Concurrency Control

Q1. Consider a database with three data items: A, B, and C. Two transactions, T1 and T2,
execute the operations listed below using the Strong Strict 2PL concurrency control protocol.

e T1: Transfer data from A to B.
e T2: Read C and then update A.

Complete the remaining "Locks Held" columns. Indicate which locks are acquired (S for Shared,
X for Exclusive) and exactly when they are released (RLS for release). If a transaction waits,
mark the time when it starts and stops waiting and acquires its lock. The first few rows are
completed as an example. (5 pts)

Time | Transaction 1 | Transaction 2 | Locks Held by T1 | Locks Held by T2
1 READ(A) S(A)

2 READ(C) S(A) S(C)
3 WRITE(A) X(A) S(C)
4 WRITE(C) X(A) X(C)
5 READ(B)

6 READ(A)

7 WRITE(B)

8 COMMIT

9

10 WRITE(A)

11 COMMIT

Q2. Consider a database with two objects, A and B, and initial values A =0, B=1. We run two
transactions according to the following schedule:

Time | Transaction T1 Transaction T2
1 BEGIN

2 READ(A)

3 READ(B)

4 BEGIN

5 READ(A)

6 WRITE(A:=B)

7 READ(B)

8 WRITE(B:=A)
9 COMMIT

10 COMMIT

(i) Assume we use MVCC to provide snapshot isolation. For both T1 and T2, state whether each
transaction commits or aborts under the above schedule. (3 pts)

(i) Does the above schedule obey conflict serializability? Sketch a dependency/precedence
graph to prove your answer. Label the edges to denote the operations that cause each
dependency. (4 pts)

(iif) What does this example show about conflict serializability versus snapshot isolation? (4 pts)

Q3. Let’s consider how the design of a concurrency control mechanism depends on the
workload and use case.

(i) Consider an OLAP system that generates business intelligence reports every night by
running a read-heavy workload. Would you prefer OCC or 2PL in this case? Give a
one-sentence justification for why. (3 pts)

(i) Consider an OLTP system that is used for ticketing at Taylor Swift concerts. Would you
prefer OCC or 2PL in this case? Give a one-sentence justification for why. (3 pts)

(iii) Zhongrui is writing the deadlock resolution function for his 2PL implementation. He decides
to resolve deadlocks by giving priority to the transaction with the most other locks held. That is,
the transaction holding fewer locks will be killed (if they are tied, we flip a coin). Describe a
scenario where this would be a good deadlock resolution policy. (3 pts)

10

Part IV. MVCC

A banking database uses append-only MVCC (the style of MVCC used in PostgreSQL).
We track the balances of accounts A and B, where initially A=100 and B=100.

A developer from Zelle inadvertently splits one transfer M(A, B) into two transactions:
e T1a (debit A): read A; write A := A — 10; commit
e T1b (credit B): read B; write B := B + 10; commit
Other transactions are running at the same time as the above transfer:
e T2 (report): read A; read B; output A + B; commit
e T3 (snapshot): read-only query that reads A and B

Q1. Consider the following schedule of the above transactions:

Time Transaction T1a Transaction T1b Transaction T2 Transaction T3
1 BEGIN

2 READ(A)

3 WRITE(A)

4 COMMIT

5 BEGIN

6 READ (A, B)
7 BEGIN

8 READ(B)

9 WRITE(B)

10 COMMIT

1 BEGIN

12 READ(A)

13 READ(B)

14 OUTPUT A+B

15 COMMIT

11

(i) Under MVCC, what does T3 read for A and B? (3 pts)

(i) What number does T2 output? (3 pts)

(iii) Assume the developer fixes their error and writes a single transaction T1 composed of the
operations of both T1a and T1b. Assuming snapshot isolation, can T3 observe the same values
of A and B once this error has been fixed? Briefly explain your answer. (3 pts)

(iv) Besides providing snapshot isolation, what is one other potential benefit of using MVCC in
this situation? (3 pts)

12

Q2. Eventual consistency

A handful of modern large-scale databases purposefully allow some temporary inconsistency in
the database. However, they guarantee that if that database runs for long enough without
crashing, it will eventually return to a consistent state. This model is known as eventual
consistency.

(i) What is a potential advantage of allowing the database to temporarily enter an inconsistent
state? (2 pts)

(i) What are some potential drawbacks of using an eventual consistency model? Where might
these drawbacks be acceptable versus unacceptable? For example, would eventual
consistency be ok for the database in Q1?7 Why or why not? (3 pts)

(iii) The idea of eventual consistency was initially very popular about 20 years ago, but it has
lost favor over time. Why might developers have moved away from this model? (3 pts)

13

Part V. Logging and Crash Recovery

You are helping maintain a simple banking database system that stores account balances in a
table:
Account(id, balance)

The system uses Write-Ahead Logging (WAL) on disk for crash recovery. Each log record is
appended to a sequential log file before the corresponding change is written to the data pages
on disk.

For this question, assume the WAL contains four basic types of log records:

BEGIN(T) - marks the start of transaction T

UPDATE(T, id, old_balance, new_balance) - T changes Account(id).balance from
old_balance to new_balance

COMMIT(T) - marks that transaction T has committed

ABORT(T) - marks that transaction T was rolled back

Assume a steal / no-force buffer policy: dirty pages may be written to disk before commit, and
committed pages may still be only in memory at commit time.

Q1. Let’s start with the core concepts of logging.

(i) When using a WAL, when is it safe to tell the outside world that a transaction has
committed? Be specific about what is happening with the log buffer, the log on disk, and any
dirty pages. (5 pts)

14

(ii) System designers generally prefer a STEAL / NO-FORCE buffer pool design compared to a
NO-STEAL / FORCE design. What are two advantages of this design? (4 pts)

Q2. Daniel is concerned that the log seems to grow without bound over time. To keep the log
small, he suggests introducing some form of checkpoints. Consider the following simple
checkpointing scheme: At a checkpoint, the system writes a CHECKPOINT<L> record to the log
where L is the set of all transactions that are currently active (started, but not committed or
rolled back) at the time of the checkpoint.

To keep things simple, before the system writes CHECKPOINT<L> to the log, all other transactions
in the system are paused, and the buffer pool is flushed completely.

(i) When recovering from a crash under this scheme, let’s say the end of the log (from the most
recent checkpoint onward) contains log records for three transactions:

e T1: appears in the checkpoint, and later has a COMMIT(T1) record

e T2: appears in the checkpoint, but has no COMMIT(T2) record

e T3: does not appear in the checkpoint, but starts and commits after the checkpoint (you

see BEGIN(T3) and COMMIT(T3) after the checkpoint)

During recovery, which of T1, T2, and T3 might need their actions to be redone, and which
might need to be undone? Give a brief justification for each transaction. (4 pts)

(ii) Given that you will write out checkpoints periodically during normal operation, you also want
to trim the log periodically to prevent it from taking up too much space on disk. When you trim
the log, how do you decide where to trim? (2 pts)

15

Q3. (i) The simple checkpointing scheme in Q2 has several negative impacts on system
performance. The ARIES recovery algorithm became popular for addressing many of these
issues. ldentify one specific performance issue with the simple scheme in Q2 that ARIES
improves. (3 pts)

(i) Explain the mechanism that ARIES uses to address the problem you have identified. A
high-level description is fine, you do not need to walk through the recovery algorithm. However,
you should give a real description of the mechanism, what it does, and how it differs from the
simple recovery case above. Do not just state the name of the mechanism. If it helps, you can
sketch an example or a picture. (5 pts)

(iii) Describe what performance metric you would expect to improve between the simple scheme
and ARIES when using the mechanism you described. (2 pts)

16

</END OF EXAM>
</END OF COURSE>

17

