
​COMP 421: Files & Databases​
​Fall 2025, Instructor Benjamin Berg, COMP421.001.FA25​

​Final Exam​

​Name:​

​PID:​

​ONYEN:​

​Question​ ​Points Recvd / Points Possible​

​Q1: Mult. Choice​ ​/ 10​

​Q2: Query Execution​ ​/ 20​

​Q3: Concurrency Control​ ​/ 25​

​Q4: MVCC​ ​/ 20​

​Q5: Logging + Recovery​ ​/ 25​

​TOTAL​ ​/100​

​This is your final exam. There are many like it, but this one is yours. There are 5 questions,​
​each with several parts/sub-questions. Detailed point values are given for each part in the​
​exam. We do not intend this exam to take the full three-hour period, but you are welcome to​
​use the full three hours if you like. Note the point values and don’t get bogged down on any one​
​question.​

​Before you begin, please read and sign:​
​In accordance with the UNC honor code, I certify that I will not give or receive help on​
​this closed-book exam. No calculators, computers, or mobile devices of any kind are​
​allowed. You may have unlimited blank paper for calculations or extended answers.​
​Mark any extended answers clearly.​ ​Name: __________________________​

​1​

​Part I. Multiple Choice​
​Each question is worth 2 points.​

​Q1.​​Consider a database table​
​Order(o_id, customer_id, order_date, total_amount)​​,​

​You need to optimize for the following workload​
​-​ ​Lookup​​a specific order by o_id​
​-​ ​Range query:​​Find orders placed in a specific date​​range​
​-​ ​Ordered Lookup:​​Find the 10 most recent orders for​​a specific customer​

​You can choose exactly​​one​​index for this table. Which​​choice offers the best overall​
​performance?​

​A. Hash table index on customer_id​
​B. B+ Tree index on total_amount​
​C. B+ Tree index on (customer_id, order_date)​
​D. Hash table index on order_date​

​Q2.​​Consider a table​​Price(item, value)​​, where two​​transactions T1 and T2 execute the​
​following schedule:​

​T1 sees inconsistent values between steps 1 and 5. Which isolation guarantee is violated in this​
​example?​
​A. Conflict serializability​
​B. View serializability​
​C. Snapshot isolation​
​D. All of the above​

​2​

​Time​ ​Transaction T1​ ​Transaction T2​ ​Value of A​

​1​ ​READ(A)​ ​1.00​

​2​ ​READ(A)​ ​1.00​

​3​ ​WRITE(A, 2.00)​ ​2.00​

​4​ ​COMMIT​ ​2.00​

​5​ ​READ(A)​ ​2.00​

​Q3.​​A DBMS uses a buffer pool and write-ahead logging (WAL) with:​
​-​ ​STEAL: Dirty pages from uncommitted transactions may be written to disk.​
​-​ ​NO-FORCE: At commit, not all updated pages are guaranteed to be on disk.​

​When the database crashes, which of the following operations needs to take place?​
​A. Rollback uncommitted transactions that were active at the time of the crash​
​B. Rollback committed transactions whose commit records were in the WAL but that still had​
​dirty pages in the buffer pool at the time of the crash​
​C. Rollback any Compensation Log Records (CLRs) for transactions that were being undone at​
​the time of the crash​
​D. Rollback all transactions that were committed before the most recent checkpoint​

​Q4.​​You are doing an external merge sort on a dataset​​that is 10 times larger than memory.​
​What will be the effect of doubling the number of buffer pages used,​​B​​?​

​A. It increases the I/O cost by writing bigger chunks to disk​
​B. It completely removes the need for a merge phase​
​C. It creates larger initial sorted runs, reducing the number of runs to merge​
​D. It only helps CPU cache behavior and does not affect I/O​

​Q5.​​Consider the SQL query:​

​SELECT *​
​FROM Orders O​
​JOIN Customers C ON O.cust_id = C.id​
​WHERE C.region = ‘US’;​

​Which query plan is usually the most efficient?​
​A. Join O and C first, then filter C.region = ‘US’​
​B. Filter Orders on O.num_items first, then join with all Customers​
​C. Replace the join with a cross product and apply the join condition at the end​
​D. Filter Customers on region = ‘US’ first, then join with O​

​3​

​Part II. Query Execution and Optimization​

​Q1.​​Compare the​​iterator​​execution model (e.g., SQLite/PostgreSQL)​​and the​​vectorized​
​execution model (e.g., DuckDB). Which model tends to be faster on large analytical scans, and​
​why? (4 pts)​

​Q2.​​Your database executes the following query:​

​SELECT A.id, B.name​
​FROM A JOIN B ON A.id = B.id​
​WHERE B.score > 90;​

​You notice that the optimizer plans on using a block nested-loop join, but you think that a simple​
​hash join​​would work better.​

​(i) If a B+ Tree index exists on B.id, why might you​​not​​prefer an index nested loop join to a hash​
​join? (2 pts)​

​4​

​(ii) Describe what happens during the​​Build Phase​​of the hash join versus what happens during​
​the​​Probe Phase​​? (3 pts)​

​(iii) In the iterator execution model, why is the build phase of a hash join considered a “pipeline​
​breaker”? (3 pts)​

​Q3.​​Consider a database table​
​Students(sid, name, age, dept),​
​where we run a SQL query:​

​SELECT sid, name​
​FROM Students​
​WHERE dept = 'CS' AND age < 25;​

​Assume there is a B+-tree index on​​Students.dept,​​but no index on​​Students.age​​.​
​SQLite’s operators follow these notations:​

​●​ ​SeqScan_R for a full table scan over relation R​
​●​ ​IndexScan_R(X = v) for an index-based access using attribute X​
​●​ ​σ_{predicate} for selection​
​●​ ​π_{attributes} for projection​

​5​

​SQLite might choose the following logical query plan:​

​π_{sid, name}​
​|​

​σ_{dept = 'CS' ∧ age < 25}​
​|​

​SeqScan_Students​

​(i) Describe the steps in the above logical plan, and why this is inefficient in this case. (2 pts)​

​(ii) Using the operator notation defined above, draw a more efficient operator tree, and briefly​
​justify why your plan is more efficient than the logical plan above. (3 pts)​

​(iii)​​If we instead had separate B+Tree indexes on both​​Students.dept,​​and​​Students.age​​,​
​explain how a bitmap index scan in PostgreSQL can efficiently answer queries such as this that​
​have multiple predicates. (3 pts)​

​6​

​Part III. Concurrency Control​

​Q1.​​Consider a database with three data items: A, B, and C. Two transactions, T1 and T2,​
​execute the operations listed below using the​​Strong Strict 2PL​​concurrency control protocol.​

​●​ ​T1: Transfer data from A to B.​
​●​ ​T2: Read C and then update A.​

​Complete the remaining "Locks Held" columns. Indicate which locks are acquired (​​S​​for Shared,​
​X​​for Exclusive) and exactly when they are released (​​RLS​​for release). If a transaction waits,​
​mark the time when it starts and stops waiting and acquires its lock. The first few rows are​
​completed as an example. (5 pts)​

​Time​ ​Transaction 1​ ​Transaction 2​ ​Locks Held by T1​ ​Locks Held by T2​

​1​ ​READ(A)​ ​S(A)​

​2​ ​READ(C)​ ​S(A)​ ​S(C)​

​3​ ​WRITE(A)​ ​X(A)​ ​S(C)​

​4​ ​WRITE(C)​ ​X(A)​ ​X(C)​

​5​ ​READ(B)​

​6​ ​READ(A)​

​7​ ​WRITE(B)​

​8​ ​COMMIT​

​9​

​10​ ​WRITE(A)​

​11​ ​COMMIT​

​7​

​Q2.​ ​Consider a database with two objects, A and B, and initial values A = 0, B = 1. We run two​
​transactions according to the following schedule:​

​(i) Assume we use MVCC to provide snapshot isolation. For both T1 and T2, state whether each​
​transaction commits or aborts under the above schedule. (3 pts)​

​(ii) Does the above schedule obey conflict serializability? Sketch a dependency/precedence​
​graph to prove your answer. Label the edges to denote the operations that cause each​
​dependency. (4 pts)​

​8​

​Time​ ​Transaction T1​ ​Transaction T2​

​1​ ​BEGIN​

​2​ ​READ(A)​

​3​ ​READ(B)​

​4​ ​BEGIN​

​5​ ​READ(A)​

​6​ ​WRITE(A:=B)​

​7​ ​READ(B)​

​8​ ​WRITE(B:=A)​

​9​ ​COMMIT​

​10​ ​COMMIT​

​(iii) What does this example show about conflict serializability versus snapshot isolation? (4 pts)​

​Q3.​​Let’s consider how the design of a concurrency control mechanism depends on the​
​workload and use case.​

​(i) Consider an OLAP system that generates business intelligence reports every night by​
​running a read-heavy workload. Would you prefer OCC or 2PL in this case? Give a​
​one-sentence justification for why. (3 pts)​

​(ii) Consider an OLTP system that is used for ticketing at Taylor Swift concerts. Would you​
​prefer OCC or 2PL in this case? Give a one-sentence justification for why. (3 pts)​

​9​

​(iii) Zhongrui is writing the deadlock resolution function for his 2PL implementation. He decides​
​to resolve deadlocks by giving priority to the transaction with the most other locks held. That is,​
​the transaction holding fewer locks will be killed (if they are tied, we flip a coin). Describe a​
​scenario where this would be a good deadlock resolution policy. (3 pts)​

​10​

​Part IV. MVCC​
​A banking database uses append-only MVCC (the style of MVCC used in PostgreSQL).​
​We track the balances of accounts A and B, where initially​​A=100​​and​​B=100​​.​

​A developer from Zelle inadvertently splits one transfer M(A, B) into two transactions:​
​●​ ​T1a (debit A): read A; write A := A − 10; commit​
​●​ ​T1b (credit B): read B; write B := B + 10; commit​

​Other transactions are running at the same time as the above transfer:​
​●​ ​T2 (report): read A; read B; output A + B; commit​
​●​ ​T3 (snapshot): read-only query that reads A and B​

​Q1.​​Consider the following schedule of the above transactions:​

​11​

​Time​ ​Transaction T1a​ ​Transaction T1b​ ​Transaction T2​ ​Transaction T3​

​1​ ​BEGIN​

​2​ ​READ(A)​

​3​ ​WRITE(A)​

​4​ ​COMMIT​

​5​ ​BEGIN​

​6​ ​READ (A, B)​

​7​ ​BEGIN​

​8​ ​READ(B)​

​9​ ​WRITE(B)​

​10​ ​COMMIT​

​11​ ​BEGIN​

​12​ ​READ(A)​

​13​ ​READ(B)​

​14​ ​OUTPUT A+B​

​15​ ​COMMIT​

​(i) Under MVCC, what does T3 read for A and B? (3 pts)​

​(ii) What number does T2 output? (3 pts)​

​(iii) Assume the developer fixes their error and writes a single transaction T1 composed of the​
​operations of both T1a and T1b. Assuming snapshot isolation, can T3 observe the same values​
​of A and B once this error has been fixed? Briefly explain your answer. (3 pts)​

​(iv) Besides providing snapshot isolation, what is one other potential benefit of using MVCC in​
​this situation? (3 pts)​

​12​

​Q2. Eventual consistency​
​A handful of modern large-scale databases purposefully allow some temporary inconsistency in​
​the database. However, they guarantee that if that database runs for long enough without​
​crashing, it will​​eventually​​return to a consistent state. This model is known as eventual​
​consistency.​

​(i) What is a potential advantage of allowing the database to temporarily enter an inconsistent​
​state? (2 pts)​

​(ii) What are some potential drawbacks of using an eventual consistency model? Where might​
​these drawbacks be acceptable versus unacceptable? For example, would eventual​
​consistency be ok for the database in Q1? Why or why not? (3 pts)​

​(iii) The idea of eventual consistency was initially very popular about 20 years ago, but it has​
​lost favor over time. Why might developers have moved away from this model? (3 pts)​

​13​

​Part V. Logging and Crash Recovery​
​You are helping maintain a simple banking database system that stores account balances in a​
​table:​

​Account(id, balance)​

​The system uses​​Write-Ahead Logging​​(WAL) on disk for crash recovery. Each log record is​
​appended to a sequential log file before the corresponding change is written to the data pages​
​on disk.​

​For this question, assume the WAL contains four basic types of log records:​

​●​ ​BEGIN(T)​ ​- marks the start of transaction T​
​●​ ​UPDATE(T, id, old_balance, new_balance)​ ​- T changes Account(id).balance from​

​old_balance to new_balance​
​●​ ​COMMIT(T)​​- marks that transaction T has committed​
​●​ ​ABORT(T)​​- marks that transaction T was rolled back​

​Assume a steal / no-force buffer policy: dirty pages may be written to disk before commit, and​
​committed pages may still be only in memory at commit time.​

​Q1.​​Let’s start with the core concepts of logging.​
​(i)​ ​When using a WAL, when is it safe to tell the outside world that a transaction has​
​committed? Be specific about what is happening with the log buffer, the log on disk, and any​
​dirty pages. (5 pts)​

​14​

​(ii)​​System designers generally prefer a STEAL / NO-FORCE​​buffer pool design compared to a​
​NO-STEAL / FORCE design. What are two advantages of this design? (4 pts)​

​Q2.​​Daniel is concerned that the log seems to grow without bound over time. To keep the log​
​small, he suggests introducing some form of checkpoints. Consider the following simple​
​checkpointing scheme: At a checkpoint, the system writes a​​CHECKPOINT<L>​​record to the log​
​where L is the set of all transactions that are currently active (started, but not committed or​
​rolled back) at the time of the checkpoint.​

​To keep things simple,​​before the system writes​​CHECKPOINT<L>​​to the log, all other transactions​
​in the system are paused, and the buffer pool is flushed completely.​

​(i)​​When recovering from a crash under this scheme, let’s say the end of the log (from the most​
​recent checkpoint onward) contains log records for three transactions:​

​●​ ​T1: appears in the checkpoint, and later has a COMMIT(T1) record​
​●​ ​T2: appears in the checkpoint, but has no COMMIT(T2) record​
​●​ ​T3: does not appear in the checkpoint, but starts and commits after the checkpoint (you​

​see BEGIN(T3) and COMMIT(T3) after the checkpoint)​
​During recovery, which of T1, T2, and T3 might need their actions to be redone, and which​
​might need to be undone? Give a brief justification for each transaction. (4 pts)​

​(ii)​​Given that you will write out checkpoints periodically during normal operation, you also want​
​to trim the log periodically to prevent it from taking up too much space on disk. When you trim​
​the log, how do you decide where to trim? (2 pts)​

​15​

​Q3.​ ​(i)​​The simple checkpointing scheme in Q2 has several negative impacts on system​
​performance. The ARIES recovery algorithm became popular for addressing many of these​
​issues. Identify one specific performance issue with the simple scheme in Q2 that ARIES​
​improves. (3 pts)​

​(ii) Explain the mechanism that ARIES uses to address the problem you have identified. A​
​high-level description is fine, you do not need to walk through the recovery algorithm. However,​
​you should give a real description of the mechanism, what it does, and how it differs from the​
​simple recovery case above. Do not just state the name of the mechanism. If it helps, you can​
​sketch an example or a picture. (5 pts)​

​(iii) Describe what performance metric you would expect to improve between the simple scheme​
​and ARIES when using the mechanism you described. (2 pts)​

​16​

​</END OF EXAM>​
​</END OF COURSE>​

​17​

