
COMP 421: Files & Databases

Lecture 10: It's Data Structure Week! 

(Or, what Ben did at his conference)
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Announcements

Project 2 has been released!  Get started!

Necessary material on B+Tree latching this 
Wendesday in class.

Reminder: project 2 will not work unless project 1 
is 100%.  If you still need to fix up P1, come to 
office hours!
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Indexes vs. Filters

An index data structure of a subset of a table's 
attributes that are organized and/or sorted to the 
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set 
membership queries; it tells you whether a key 
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter
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Today's Agenda

Bloom Filters

Skip Lists

Tries / Radix Trees

Inverted Indexes

Vector Indexes
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Bloom Filters

Probabilistic data structure (bitmap) that answers 
set membership queries.
→ False negatives will never occur.
→ False positives can sometimes occur.
→ See Bloom Filter Calculator.

Insert(x):
→ Use k hash functions to set bits in the filter to 1.

Lookup(x):
→ Check whether the bits are 1 for each hash function.
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https://hur.st/bloomfilter/


Bloom Filters

Insert 'RZA'

Insert 'GZA'

Lookup 'RZA' 

Lookup 'Raekwon'

Lookup 'ODB'
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Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4 

hash1('RZA') = 2222 % 8 = 6 

hash2('GZA') = 7777 % 8 = 1 

hash1('GZA') = 5555 % 8 = 3 hash1('Raekwon') = 3333 % 8 = 5 

3 hash2('Raekwon') = 8899 % 8 = 

hash1('ODB') = 6699 % 8 = 3 

6 hash2('ODB') = 9966 % 8 = 

1 11 1

→ FALSE

→ TRUE

→ TRUE



Bloom Filters

False Negative Rate:

 Probability that Insert(x) followed by Lookup(x) = False

 After Insert(x), my bits are set forever

 False Negative Rate = Zero (!)

False Positive Rate:

 Probability Lookup(x) = True without Insert

 Given 𝑚 bits, storing 𝑛 keys, with 𝑘 probes per key:

 What is Prob(𝑛 + 1𝑠𝑡 key gives false positive)?  Not 0!
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It's Log!
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MemTable

Log-structured Storage

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)
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SSTable

SSTable

Level #0

Level #1

Level #2

SSTable

SSTableSSTable

GET (key101)

• Min/Max Key 
Per SSTable

• Key Filter 
Per Level

SummaryTable

Newest→Oldest
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Bloom Filter Math

Prob(false positive) = Prob(pick k probes, all are 1)

Prob(false positive) = Prob(all k probes are 1 after n keys)

        ≈ Prob(one probe is 1 after n keys)k

Easier: 

 Prob(probe is 0 after 1 key)  = 1 −
1

𝑚

𝑘

 Prob(probe is 0 after n keys) = 1 −
1

𝑚

𝑘
 

𝑛

= 1 −
1

𝑚

𝑘𝑛

                          = 1 −
1

𝑚

𝑚
 

𝑘𝑛/𝑚
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Bloom Filter Math

Prob(probe is 0 after n keys)= 1 −
1

𝑚

𝑚
 

𝑘𝑛/𝑚

 lim
𝑚→∞

1 −
1

𝑚

𝑚
=

1

𝑒
  

Prob(probe is 0 after n keys) ≈ 𝑒−𝑘𝑛/𝑚 for large m

Prob(Probe is 1 after n keys) ≈ 1 − 𝑒−𝑘𝑛/𝑚  for large m

Prob(All k probes are 1 after n keys) ≈ 1 − 𝑒−
𝑘𝑛

𝑚

𝑘

 for large m

    -Assumes some independence

     -Not needed to get a matching result with high probability using    
 Hoeffding Bounds

    -Interested?  Take my grad class!
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Bloom Filters IRL
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Given 𝑛, for any 0 < 𝜖 < 1, find smallest 𝑚 such that:

 𝜖 = Prob(All k probes are 1 after n keys) ≈ 1 − 𝑒−𝑘𝑛/𝑚 𝑘
 

First, fix 𝑛, 𝑚 and minimize w.r.t k,   𝑘∗ =
𝑚

𝑛
ln 2

Next, for given n, using 𝑘∗ probes, solve for 𝑚∗

Optimal # bits per item to achive false positive rate 𝜖:
𝑚∗

𝑛
≈ −2.08 ln 𝜖



Bloom Filters IRL
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Optimal # bits per item to achive false positive rate 𝜖:
𝑚∗

𝑛
= −

ln 𝜖

ln 2 2 ≈ −2.08 ln 𝜖     𝑘∗ =
𝑚

𝑛
ln 2 = −

ln 𝜖

ln 2

Say I fix false positive rate of 1%:
 ≈ 9.6 bits / item
 ≈ 7 probes
For any number of keys!

Why do this?
 Time(insert) or Time(lookup) = 𝑂(𝑘∗)= 𝑂 log

1

𝜖

sizeof(char)=8 bits

sizeof(ptr)=32 bits



Other Filters

Counting Bloom Filter
→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of 

occurrences of a key in a set.

Cuckoo Filter
→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead 

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate 

exact matches and range filtering.
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https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF
https://redis.io/docs/latest/develop/data-types/probabilistic/cuckoo-filter/


Indexes vs. Filters

An index data structure of a subset of a table's 
attributes that are organized and/or sorted to the 
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set 
membership queries; it tells you whether a key 
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter
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B+Trees as Fancy Linked Lists

3510

<10 ≥10 <35 ≥35

<20 ≥20

20

Index Key(s) Low→High

6 10 20 31 38 44

"M words begin here"



K1 K2 K3 K4 K6K5 K7

Observation

Linked lists are "simplest" index, but...

All operations have to linear search.
→ Average Cost: O(n)
→ More than one way to index a linked list...
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Skip Lists
Multiple levels of linked lists with extra 
pointers to skip over entries.
→ 1st level is a sorted list of all keys.
→ 2nd level links every other key
→ 3rd level links every fourth key
→ Each level has 𝑝 fraction of the keys of one 

below it

Maintains keys in sorted order without 
requiring global rebalancing.
→ Want: O(log n) search times.

Mostly for in-memory data structures.
→ Example: LSM MemTable
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http://dl.acm.org/citation.cfm?id=78977


EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists Basics
19

∞

∞

∞

E[𝑳𝟏]=N

E 𝑳𝟐 = 𝒑𝑵

E 𝑳𝟑 = 𝒑𝟐𝑵

Flip a coin w/ prob 𝒑 to decide how 
many levels to add the new key into. 

How many levels in expectation? log𝟏/𝒑 𝑵



EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists: INSERT
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∞

∞

∞

Insert K5

K5

K5

K5

V5



End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

Skip Lists: SEARCH
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∞

∞

∞K3<K5

K3>K2 K3<K4

Find K3



Skip Lists: DELETE

First logically remove a key from the index by 
setting a flag to tell threads to ignore.

Then physically remove the key once we know 
that no other thread is holding the reference.
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End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

Skip Lists: DELETE
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∞

∞

∞

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K5



End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

Skip List Math
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∞

∞

∞

Find K4



Skip List Math

Question: Expected length to traverse a skiplist 
with N keys and link probability 𝑝?

• Let 𝑀 be random variable, path length

Break up the traversal path (moving backwards):

• Move left until up-link

• Move up one level, repeat

• Let 𝑀𝑖  be # left steps before finding an up-link

Main idea: each link is independent, identically 
distributed w/ prob 𝒑
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Skip List Math
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K1

V1

K2

V2

K3

V3

K4

V4

K6

V6

K5

V5

Question: Starting at any node, how many steps left until up-link?

Question: How many 𝑝-coin flips to get tails?

𝑀𝑖~ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝 ;  𝑃𝑟 𝑀𝑖 = 𝑥 = 1 − 𝑝 𝑥−1 𝑝

E 𝑀𝑖 = ෍

𝑥=1

∞

𝑥 ⋅ 1 − 𝑝 𝑥−1 𝑝 =
1

𝑝
Left steps per up-link 

(expected)



Skip List Math

Question: Expected length to traverse a skiplist 
with N keys and link probability 𝑝?

𝐸 𝑀 = 𝐸[𝑀1 + 𝑀2 + 𝑀3 + ⋯ + 𝑀𝐿−1]

        ≈ 𝐸 𝑀𝑖 ∙ 𝐸 # 𝐿𝑒𝑣𝑒𝑙𝑠

        =
1

𝑝
 ∙  log1

𝑝

𝑁 = 𝑂(log 𝑁)

In other words...

27



It's Log!
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Skip Lists

Advantages:
→ Uses less memory than a typical B+Tree if you do not 

include reverse pointers.
→ Insertions and deletions do not require rebalancing.

Disadvantages:
→ Not disk/cache friendly because they do not optimize 

locality of references.
→ Reverse search is non-trivial.
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We stopped here in class because I decided to focus 
more on the internals of Bloom filters and skip lists.  

The rest of these slides will not be covered, but cover 
some good-to-know data structures for indexing
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Observation

Both B+Trees and Skip Lists have the same 
weakness:  Lookup(x) == full traversal

Lookup for keys that don't exist are slow

• "Negative caching", insert tombstone for 
objects that don't exist

Want: Best of both worlds.  An index data 
structure with filter-like properties
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Trie Index

Use a digital representation of keys 
to examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or 

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity 
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be 

reconstructed from paths.
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Keys:  HELLO, HAT, HAVE
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Trie Key Span

The span of a trie level is the number of bits that 
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to 

the next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the 
physical height of the tree.
→ n-way Trie = Fan-Out of n
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Trie Key Span

Keys:  K10,K25,K31

34

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat 
10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤
¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤
¤ ¤

Ø ¤
Ø ¤

Tuple 
Pointer

Node 
Pointer



Radix Tree

Vertically compressed trie that 
compacts nodes with a single 
child.
→ Also known as Patricia Tree.

Can produce false positives, so 
the DBMS always checks the 
original tuple to see whether a 
key matches.
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1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤
Ø ¤
¤ ¤

Repeat 
10x

Tuple 
Pointer

Node 
Pointer



Observation

The indexes that we've discussed are 
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and 

September 2024.

They are not good at keyword 
searches:
→ Example: Find all Wikipedia articles that 

contain the word "Pavlo"

36

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island, 
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh, 
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data 
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer 
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

CREATE INDEX idx_rev_cntnt
    ON revisions (content);

SELECT pageID FROM revisions
 WHERE content LIKE '%Pavlo%';



Inverted Index

An inverted index stores a mapping 
of terms to records that contain 
those terms in the target attribute.
→ Sometimes called a full-text search 

index.
→ Originally called a concordance (1200s).

Many major DBMSs support these 
natively. But there are also 
specialized DBMSs and libraries.
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id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island, 
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh, 
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data 
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer 
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

Term /
Frequency

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)


Inverted Index: Lucene

Uses a Finite State Transducer for 
determining offset of terms in 
dictionary.

Incrementally create dictionary 
segments and then merge them in 
the background.
→ Uses compression methods we 

previously discussed (e.g., delta, bit 
packing).

→ Also supports precomputed 
aggregations for terms and occurrences.
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Dictionary
BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

Find PAV

Offset= 340

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d


Inverted Index: PostgreSQL

PostgreSQL's Generalized Inverted 
Index (GIN) uses a B+Tree for the 
term dictionary that map to a 
posting list data structure.

Posting list contents varies 
depending on number of records per 
term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to 
avoid incremental updates.
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Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html


OBSERVATION

Inverted indexes search data based on its contents.
→ There is a little magic to tweak terms based on linguistic 

models.
→ Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact 
keywords (e.g., "Wu-Tang"), an application may 
want search for records that are related to topics 
(e.g., "hip-hop groups with songs about slinging").
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Vector Indexes

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector 

searches.

The correctness of a query depends on whether 
the result "feels right".
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Vector Indexes: Inverted File

Partition vectors into smaller groups 
using a clustering algorithm. 

To find a match, use same clustering 
algorithm to map into a group, then 
scan that group's vectors.
→ Also check nearby groups to improve 

accuracy.

Preprocess / quantize vectors to 
reduce dimensionality.

Example: IVFFlat

42

Source: Chi Zhang

 
 

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db


Vector Indexes: Navigable Small Worlds 

Build a graph where each node 
represents a vector and it has edges 
to its n nearest neighbors.
→ Can use multiple levels of graphs 

(HNSW)

To find a match for a given vector, 
enter the graph and then greedily 
choose the next edge that moves 
closer to that vector.

Example: Faiss, hnswlib
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Source: Chi Zhang

           

             

   

   

           

             

           

             

           

             

   

   

https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db


Conclusion

We will see filters again this semester.

B+Trees are still the way to go for tree indexes.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree
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Next Class

How to make indexes thread-safe!
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Leaderboard Results

The top 20 fastest valid implementations in the 
class will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Bonuses applied manually at the end.  Best 
leaderboard performer gets swag/prize TBD
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