COMP 421: Files & Databases

Lecture 10: It's Data Structure Week!
(Or, what Ben did at his conference)

COMPUTER SCIENCE



2
Announcements

Project 2 has been released! Get started!

Necessary material on B+Tree latching this
Wendesday in class.

Reminder: project 2 will not work unless project 1
is 100%. If you still need to fix up P1, come to
office hours!



. 3
Indexes vs. Filters

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the

location of specific tuples using those attributes.
— Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a key

(likely) exists in a set but not where it is located.
— Example: Bloom Filter




Today's Agenda 4

Bloom Filters

Skip Lists

Tries / Radix Trees
Inverted Indexes
Vector Indexes

COMPUTER SCIENCE



Bloom Filters

Probabilistic data structure (bitmap) that answers

set membership queries.

— False negatives will never occur.

— False positives can sometimes occur.
— See Bloom Filter Calculator.

Insert(x):
— Use k hash functions to set bits in the filter to 1.

Lookup(x):

— Check whether the bits are 1 for each hash function.

COMPUTER SCIENCE


https://hur.st/bloomfilter/

Bloom Filters 6

Insert 'RZA' Bloom Filter

e 1 2 3 4 5 6 17
o101 1|0|1/|F0

Insert 'GZA'

Lookup 'RZA' - TRUE

-S> FALSE hash (' SRS 58
hash (' DEoBHED 38

Lookup 'Raekwon’

|
b

Lookup 'ODB' - TRUE

ENT OF
COMPUTER SCIENCE



Bloom Filters 7

False Negative Rate:
Probability that Insert(x) followed by Lookup(x) = False
After Insert(x), my bits are set forever
False Negative Rate = Zero (!)

False Positive Rate:
Probability Lookup(x) = True without Insert
Given m bits, storing n keys, with k probes per key:
What is Prob(n + 1st key gives false positive)? Not 0!






Log-structured Storage 9

GET (ke‘ymﬂ» MemTable SSTable
C1J
SummaryTable PUT Ckevion, =)
* Min/Max Key ( T ] ‘ J » PUT (key192,5,)
Per SSTable ] PUT (key103,c,)
* Key Filter
Per Level I[ ]|[ ) ]I

Memory ® ‘
Level #0 | sSTable SSTable Newes te Oldest
| ]

|
Level #1 SSTable

| J
1

Level #2 SSTable




Bloom Filter Math

Prob(false positive) = Prob(pick k probes, all are 1)

Prob(false positive) = Prob(all k probes are 1 after n keys)
~ Prob(one probe is 1 after n keys)¥
Easier:

K
Prob(probe is 0 after 1 key) = (1 — —)

1\ K " 1\ kn
Prob(probe is O after n keys) = ((1 — ;) ) = (1 — g)

-(e-a7)



Bloom Filter Math

kn/m
. 1\™
Prob(probe is 0 after n keys)= ((1 = —) ) (wat?)

lim (1-2)" =2 ()

m-—oo m
Prob(probe is O after n keys) = e “¥*/™ for large m

Prob(Probe is 1 after n keys) = (1 — e‘k"/m) for large m

kn k
Prob(All k probes are 1 after n keys) = (1 — e_ﬁ) for large m

-Assumes some independence

-Not needed to get a matching result with high probability using
Hoeffding Bounds

i UNC - CInterested? Take my grad class!



Bloom Filters IRL

Givenn, forany 0 < € < 1, find smallest m such that:

k
€ = Prob(All k probes are 1 after n keys) ~ (1 — e~ kn/m)
First, fix n, m and minimize w.rtk, k™ = %ln 2
Next, for given n, using k™ probes, solve for m”

Optimal # bits per item to achive false positive rate €:

*

™ ~ —-208lne

E
COMPUTER SCIENCE



Bloom Filters IRL

Optimal # bits per item to achive false positive rate €:

m* In € s _m _ _Ine
" ——(ln2)2~—2.081n6 k —nan— —
Why do this?

Time(insert) or Time(lookup) = 0(k™) = 0 (10g1>
€

Say | fix false positive rate of 1%:
~ 9.6 bits / item sizeof(ptr)=32 bits

~ 7 probes sizeof(char)=8 bits
For any number of keys!

)
COMPUTER SCIENCE



Pecs = Develop with Redis + Understana Redls data tupes -+ Probabilistic - Cuckos filter
Develop with Redis

Quick starts

Cuckoo filter

Cuckoo filters are a probabilistic data structure that checks for presence of an element in a set

Connect

Understand data types

Counting Bloom Filter |

— Supports dynamically add!n

— Uses integers instead of bits
occurrences of a key in a se

A Cuckoo filter, just like a Bloom filter, is a probabilistic data structure in Redis Stack that
enables you to check if an element is present in a setin a very fast and Space efficient way,
while also allowing for deletions and showing better performance than Bloom in some
scenarios.

Strings
JSON

Lists

Sets

Hashes e N
Cuckoo filter is an array of buckets, storing fingerprints of the values inone of the buckets at

Sorted sets

possible buckets for the fingerprint of x, and returns true if an identical fingerprint is found, A
cuckoo filter's fingerprint size will directly determine the false positive rate.

Streams

Geospatial

Bitmaps

Bitfields
Use cases
Probabilistic

Cuckoo Filter |
— Also supports dynamically :
— Uses a Cuckoo Hash Table k

of full keys.

ngerLogLog

Targeted ad campaigns (advertising, retail)
Bloom filter

This application answers this question: Has the user signed up for this campaign yet?

Cuckoo filter

Use a Cuckoo fitter for every campaign, populated with targeted users' ids. On every visit, the
User id is checked against one of the Cuckoo filters.

t-digest

Top-K

Count-min sketch

* Ifves, the user has not signed up for campaign. Show the ad.
*+ Ifthe user clicks ad and signs up, remove the user id from that Cuckoo filter.
* Ifno, the user has signed up for that campaign. Try the next ad/Cuckoo filter,

Configuration

Time series

Interact with datq Discount code/coy pon validation (retail, online shops)

Libraries and tools This application answers this question: Has this discount code/coupon been used yet?

Use a Cuckoo filter populated with all discount codes/coupons. On every try, the entered code

Redis products Is checked against the filter.

Succinct Range Filter .(Su
— Immutable compact trie th e

exact matches and range f
fl| UNC

I)El’r’\llT]\iE]\'T‘()F
COMPUTER SCIENCE


https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF
https://redis.io/docs/latest/develop/data-types/probabilistic/cuckoo-filter/

Indexes vs. Filters

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the

location of specific tuples using those attributes.
— Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a key

(likely) exists in a set but not where it is located.
— Example: Bloom Filter



B+Trees as Fancy Linked Lists

20
<20 >20

10 < 135
<10 >10 <35 >35

sl =Tiell —T2e[[31—]38][44

Index Key(s) Low—=>Hiqgh

"M words begin here"



Observation

Linked lists are "simplest" index, but...

All operations have to linear search.

— Average Cost: O(n)
— More than one way to index a linked list...

®
=
-

[

@
3 1 &
o o

— K, | &1 K,

E
COMPUTER SCIENCE



Skip Lists

Multiple levels of linked lists with extra

pointers to skip over entries.

— 15t |evel is a sorted list of all keys.

— 2nd |evel links every other key

— 3rd]evel links every fourth key

— Each level has p fraction of the keys of one
below it

Skip Lists: A Probabilistic Alternative to
Balanced Trees

Maintains keys in sorted order without

requiring global rebalancing.
— Want: O(log n) search times.

Mostly for in-memory data structures. O singlestore  WIREDTIGER

— Example: LSM MemTable
| UNC RocksDB Q Couchbase



http://dl.acm.org/citation.cfm?id=78977

Skip Lists Basics -

Flip a coin w/ prob p to decide how
many levels to add the new key into.

How many levels in expectation?




Skip Lists: INSERT

Insert K ;
Levels End




Skip Lists: SEARCH

Find K
Levels End
<
K.,>K
O 3~ 2 K. | ® - 00
*
¥
o « | o k. | &1 1. | | oo
V; Vs Vs

COMPUTER SCIENCE



Skip Lists: DELETE

First logically remove a key from the index by
setting a flag to tell threads to ignore.

Then physically remove the key once we know
that no other thread is holding the reference.

EN
COMPUTER SCIENCE



Skip Lists: DELETE

Delete K
Levels End
® >|OO
’ *
_.IJ ¥
o k| o1k, | & «,| & K, | & K, | 1] oo
v, BB v, |58 v, |58

COMPUTER SCIENCE



Skip List Math

Find K,
Levels End
<] : [
= : (=

COMPUTER SCIENCE



Skip List Math

Question: Expected length to traverse a skiplist
with N keys and link probability p?

 Let M be random variable, path length

Break up the traversal path (moving backwards):
* Move left until up-link

 Move up one level, repeat

* Let M; be # left steps before finding an up-link

Main idea: each link is independent, identically
7 une  distributed w/ prob p



Skip List Math

Question: Starting at any node, how many steps left until up-link?
Question: How many p-coin flips to get tails?

M;~ Geometric(p); Pr(M; =x) = (1 —p)* 1p

E|M;] = Z x-(1—-p)*1p= 1 Left steps per up-link
b p (expected)
K, | @ K;| @ s K, | ®

COMPUTER SCIENCE



Skip List Math

Question: Expected length to traverse a skiplist
with N keys and link probability p?

E[M] — E[M1 ~+ M2 + M3 + - 4 ML—l]
~ E|[M;] - E[# Levels]

=1. logi N = O(logN)
P P

In other words...

COMPUTER SCIENCE






Skip Lists

Advantages:

— Uses less memory than a typical B+Tree if you do not
include reverse pointers.

— Insertions and deletions do not require rebalancing.

Disadvantages:

— Not disk/cache friendly because they do not optimize
locality of references.

— Reverse search is non-trivial.



We stopped here in class because | decided to focus
more on the internals of Bloom filters and skip lists.

The rest of these slides will not be covered, but cover
some good-to-know data structures for indexing

COMPUTER SCIENCE



Observation

Both B+Trees and Skip Lists have the same
weakness: Lookup(x) == full traversal

Lookup for keys that don't exist are slow

* "Negative caching", insert tombstone for
objects that don't exist

Want: Best of both worlds. An index data
structure with filter-like properties

COMPUTER SCIENCE



Trie Index

Use a digital representation of keys

to examine prefixes one-by-one.
— aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
— Does not depend on existing keys or
insertion order.

— Does not require rebalancing operations.

All operations have O(k) complexity

where k is the length of the key.

— Path to a leaf node represents a key.

— Keys are stored implicitly and can be
reconstructed from paths.

UNC
—_— DEPARTMENT OF
COMPUTER SCIENCE

Keys: HELLO J HAT, HAVE




COMPUTER SCIENCE

Trie Key Span

The span of a trie level is the number of bits that

each partial key / digit represents.
— |If the digit exists in the corpus, then store a pointer to
the next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.

— n-way Trie = Fan-Out of n




Trie Key Span

1-bit Span Trie

*Ninnac
Repeat
glonlo 10x
1
cgesl | 2e
=
o |5l % 2 AL
1 v
ool o | 0 Pwﬁ 1
o elwlo|ldlendelwll s
T—1 T '
Tuple Node

COMPUTER SCIENCE

Keys: K10,K25,K31

4

K10~»>
K25~»
K31~»>

0
0
0

0000000 000PHO10
0000000 @@@1
0000000 0001




Radix Tree

1-bit Span Radix Tree Vertically compressed trie that

¥10 compacts nodes with a single
wlo]3oR" child.
o5 — Also known as Patricia Tree.
l Ty

o8 Can produce false positives, so

4R the DBMS always checks the

vy original tuple to see whether a

key matches. ---=""-~ ~
;&HyPer € UMBRA
pluple g, ~ Node o “Q DuckDB &% CedarDB 2=

tremeDB
| UNC solidos g <!



Observation

revisions(id,content,..)

. 1 H
The indexes that we've discussed are

useful for "point" and "range" queries: [ o cm w e o mos cimssn o s s
— Find all customers in the 15217 zipcode.

— Find all orders between June 2024 and
September 2024.

Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
22 Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

In computing, a database is an organized collection of data or a type of data
33 store based on the use of a database management system (DBMS), the software...

Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
44 Science at Carnegie Mellon University. He conducts research on database...

They are not good at keyword CREATE INDEX idx_rev_cntnt

searches: ON revisions (content);

— Example: Find all Wikipedia articles that
contain the word "Pavlo" SELECT pageID FROM revisions

WHERE content LIKE '%Pavlo%’;

=)
e



Inverted Index

revisions(id,content,..)

An inverted index stores a mapping

of terms to records that contain N P S —

New York City, in 1992.

those terms in the target attribute. | e ot o s e sty e

Pennsylvania. The t t tio t blished in 1900 by Ani d negle4.4

_) Som eti mes Ca I Ie d a fUII-teXt SearCh 33 In computing, a database is an organized collection of data or a type of data

. store based on the use of a database management system (DBMS), the software...
index.

— Originally called a concordance (1200s).

Many major DBMSs support these Dictionary  Posting Lists
natively. But there are also Twu-Tanz|2 &> | 11]44

specialized DBMSs and I|brar|$,s Term / carnesio 3 ¢—>112]33] 24
J/ arnegie
Lucenz. g & elasticsearch SQlr = Frequency |

J ) Database |2 |@= |33|44
7\ Xapian Y OpenSearch <® Sphinx TS

0. 78 @ vespa splunk>

Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
44 Science at Carnegie Mellon University. He conducts research on database...



https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

Inverted Index: Lucene

Dictionary Find PAV
Uses a Finite State Transducer for N
determining offset of terms in [ Brav |
dictionary. » PAV vergntt
Incrementally create dictionary i A e \ eight=o

segments and then merge them in

the background. weight=2 A

— Uses compression methods we we1ght=T
previously discussed (e.g., delta, bit vei ght=0
packing). A

— Also supports precomputed

aggregations for terms and occurrences.
Offset= 8

COMPUTER SCIENCE


http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

Inverted Index: PostgreSQL

PostgreSQL's Generalized Inverted ‘
Index (GIN) uses a B+Tree for the Dictionary  Pending List
term dictionary that map to a ,
posting list data structure. . *

Posting list contents varies y y y y

depending on number of records per

term:

— Few: Sorted list of record ids.
— Many: Another B+Tree of record ids.

=
Posting List

I
Uses a separate "pending list" log to Posting List  Posting Tree
avoid incremental updates.

ENT
COMPUTER SCIENCE


https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

OBSERVATION

Inverted indexes search data based on its contents.
— There is a little magic to tweak terms based on linguistic

models.
— Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact
keywords (e.g., "Wu-Tang"), an application may
want search for records that are related to topics
(e.g., "hip-hop groups with songs about slinging").



Vector Indexes

Specialized data structures to perform nearest-

neighbor searches on embeddings.

— An embedding is an array of floating point numbers.

— May also need to filter data before / after vector
searches.

The correctness of a query depends on whether
the result "feels right".

@ Pinecone ) wewiee @ milvus  Gdrant

| UNC “mqrqo gCIoseVector .IVectorDB turbopuffer <(°0°)>

— DEPARTMENT OF

COMPUTER SCIENCE



Vector Indexes: Inverted File

Partition vectors into smaller groups
using a clustering algorithm.

To find a match, use same clustering
algorithm to map into a group, then

scan that group's vectors.

— Also check nearby groups to improve
accuracy.

Preprocess / quantize vectors to
reduce dimensionality.

Example: IVFFlat

COMPUTER SCIENCE


https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

Vector Indexes: Navigable Small Worlds

Build a graph where each node

represents a vector and it has edges

to its n nearest neighbors.

— Can use multiple levels of graphs
(HNSW)

To find a match for a given vector,

enter the graph and then greedily
choose the next edge that moves
closer to that vector.

Example: Faiss, hnswlib

UNC Source: Chi Zhang
DEPARTMENT OF
COMPUTER SCIENCE


https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db

Conclusion

We will see filters again this semester.
B+Trees are still the way to go for tree indexes.

We did not discuss geo-spatial tree indexes:
— Examples: R-Tree, Quad-Tree, KD-Tree

=)

DEPARTMENT OF
COMPUTER SCIENCE



Next Class

How to make indexes thread-safe!

COMPUTER SCIENCE



Leaderboard Results

The top 20 fastest valid implementations in the

class will receive extra credit for this assignment.
— #1: 50% bonus points

— #2-10: 25% bonus points

— #11-20: 10% bonus points

Bonuses applied manually at the end. Best
leaderboard performer gets swag/prize TBD

COMPUTER SCIENCE



	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Indexes vs. Filters
	Slide 4: Today's Agenda

	Bloom Filters
	Slide 5: Bloom Filters
	Slide 6: Bloom Filters
	Slide 7: Bloom Filters
	Slide 8: It's Log!
	Slide 9: Log-structured Storage
	Slide 10: Bloom Filter Math
	Slide 11: Bloom Filter Math
	Slide 12: Bloom Filters IRL
	Slide 13: Bloom Filters IRL
	Slide 14: Other Filters

	Skip Lists
	Slide 15: Indexes vs. Filters
	Slide 16: B+Trees as Fancy Linked Lists
	Slide 17: Observation
	Slide 18: Skip Lists
	Slide 19: Skip Lists Basics
	Slide 20: Skip Lists: INSERT
	Slide 21: Skip Lists: SEARCH
	Slide 22: Skip Lists: DELETE
	Slide 23: Skip Lists: DELETE
	Slide 24: Skip List Math
	Slide 25: Skip List Math
	Slide 26: Skip List Math
	Slide 27: Skip List Math
	Slide 28: It's Log!
	Slide 29: Skip Lists
	Slide 30: We stopped here in class because I decided to focus more on the internals of Bloom filters and skip lists.  The rest of these slides will not be covered, but cover some good-to-know data structures for indexing

	Radix Trees
	Slide 31: Observation
	Slide 32: Trie Index
	Slide 33: Trie Key Span
	Slide 34: Trie Key Span
	Slide 35: Radix Tree

	Inverted Index
	Slide 36: Observation
	Slide 37: Inverted Index
	Slide 38: Inverted Index: Lucene
	Slide 39: Inverted Index: PostgreSQL

	Vector Indexes
	Slide 40: OBSERVATION
	Slide 41: Vector Indexes
	Slide 42: Vector Indexes: Inverted File
	Slide 43: Vector Indexes: Navigable Small Worlds 

	Conclusion
	Slide 44: Conclusion
	Slide 45: Next Class
	Slide 46: Leaderboard Results


