
COMP 421: Files & Databases

Lecture 10: It's Data Structure Week!

(Or, what Ben did at his conference)

1

Announcements

Project 2 has been released! Get started!

Necessary material on B+Tree latching this
Wendesday in class.

Reminder: project 2 will not work unless project 1
is 100%. If you still need to fix up P1, come to
office hours!

2

Indexes vs. Filters

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a key
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter

3

Today's Agenda

Bloom Filters

Skip Lists

Tries / Radix Trees

Inverted Indexes

Vector Indexes

4

Bloom Filters

Probabilistic data structure (bitmap) that answers
set membership queries.
→ False negatives will never occur.
→ False positives can sometimes occur.
→ See Bloom Filter Calculator.

Insert(x):
→ Use k hash functions to set bits in the filter to 1.

Lookup(x):
→ Check whether the bits are 1 for each hash function.

5

https://hur.st/bloomfilter/

Bloom Filters

Insert 'RZA'

Insert 'GZA'

Lookup 'RZA'

Lookup 'Raekwon'

Lookup 'ODB'

6

Bloom Filter

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

hash2('RZA') = 4444 % 8 = 4

hash1('RZA') = 2222 % 8 = 6

hash2('GZA') = 7777 % 8 = 1

hash1('GZA') = 5555 % 8 = 3 hash1('Raekwon') = 3333 % 8 = 5

3 hash2('Raekwon') = 8899 % 8 =

hash1('ODB') = 6699 % 8 = 3

6 hash2('ODB') = 9966 % 8 =

1 11 1

→ FALSE

→ TRUE

→ TRUE

Bloom Filters

False Negative Rate:

 Probability that Insert(x) followed by Lookup(x) = False

 After Insert(x), my bits are set forever

 False Negative Rate = Zero (!)

False Positive Rate:

 Probability Lookup(x) = True without Insert

 Given 𝑚 bits, storing 𝑛 keys, with 𝑘 probes per key:

 What is Prob(𝑛 + 1𝑠𝑡 key gives false positive)? Not 0!

7

It's Log!
8

MemTable

Log-structured Storage

Disk

Memory

SSTable

PUT (key101,a2)

PUT (key102,b1)

PUT (key103,c1)

K
ey Lo

w
→

H
ig

h

SSTable

SSTable

Level #0

Level #1

Level #2

SSTable

SSTableSSTable

GET (key101)

• Min/Max Key
Per SSTable

• Key Filter
Per Level

SummaryTable

Newest→Oldest

9

Bloom Filter

Bloom Filter

Bloom Filter

Bloom Filter Math

Prob(false positive) = Prob(pick k probes, all are 1)

Prob(false positive) = Prob(all k probes are 1 after n keys)

 ≈ Prob(one probe is 1 after n keys)k

Easier:

 Prob(probe is 0 after 1 key) = 1 −
1

𝑚

𝑘

 Prob(probe is 0 after n keys) = 1 −
1

𝑚

𝑘

𝑛

= 1 −
1

𝑚

𝑘𝑛

 = 1 −
1

𝑚

𝑚

𝑘𝑛/𝑚

10

Bloom Filter Math

Prob(probe is 0 after n keys)= 1 −
1

𝑚

𝑚

𝑘𝑛/𝑚

 lim
𝑚→∞

1 −
1

𝑚

𝑚
=

1

𝑒

Prob(probe is 0 after n keys) ≈ 𝑒−𝑘𝑛/𝑚 for large m

Prob(Probe is 1 after n keys) ≈ 1 − 𝑒−𝑘𝑛/𝑚 for large m

Prob(All k probes are 1 after n keys) ≈ 1 − 𝑒−
𝑘𝑛

𝑚

𝑘

 for large m

 -Assumes some independence

 -Not needed to get a matching result with high probability using
 Hoeffding Bounds

 -Interested? Take my grad class!

11

(wat?)

(!)

Bloom Filters IRL
12

Given 𝑛, for any 0 < 𝜖 < 1, find smallest 𝑚 such that:

 𝜖 = Prob(All k probes are 1 after n keys) ≈ 1 − 𝑒−𝑘𝑛/𝑚 𝑘

First, fix 𝑛, 𝑚 and minimize w.r.t k, 𝑘∗ =
𝑚

𝑛
ln 2

Next, for given n, using 𝑘∗ probes, solve for 𝑚∗

Optimal # bits per item to achive false positive rate 𝜖:
𝑚∗

𝑛
≈ −2.08 ln 𝜖

Bloom Filters IRL
13

Optimal # bits per item to achive false positive rate 𝜖:
𝑚∗

𝑛
= −

ln 𝜖

ln 2 2 ≈ −2.08 ln 𝜖 𝑘∗ =
𝑚

𝑛
ln 2 = −

ln 𝜖

ln 2

Say I fix false positive rate of 1%:
 ≈ 9.6 bits / item
 ≈ 7 probes
For any number of keys!

Why do this?
 Time(insert) or Time(lookup) = 𝑂(𝑘∗)= 𝑂 log

1

𝜖

sizeof(char)=8 bits

sizeof(ptr)=32 bits

Other Filters

Counting Bloom Filter
→ Supports dynamically adding and removing keys.
→ Uses integers instead of bits to count the number of

occurrences of a key in a set.

Cuckoo Filter
→ Also supports dynamically adding and removing keys.
→ Uses a Cuckoo Hash Table but stores fingerprints instead

of full keys.

Succinct Range Filter (SuRF)
→ Immutable compact trie that supports approximate

exact matches and range filtering.

14

https://en.wikipedia.org/wiki/Counting_Bloom_filter
https://en.wikipedia.org/wiki/Cuckoo_filter
https://en.wikipedia.org/wiki/Fingerprint_(computing)
https://github.com/efficient/SuRF
https://redis.io/docs/latest/develop/data-types/probabilistic/cuckoo-filter/

Indexes vs. Filters

An index data structure of a subset of a table's
attributes that are organized and/or sorted to the
location of specific tuples using those attributes.
→ Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a key
(likely) exists in a set but not where it is located.
→ Example: Bloom Filter

15

B+Trees as Fancy Linked Lists

3510

<10 ≥10 <35 ≥35

<20 ≥20

20

Index Key(s) Low→High

6 10 20 31 38 44

"M words begin here"

K1 K2 K3 K4 K6K5 K7

Observation

Linked lists are "simplest" index, but...

All operations have to linear search.
→ Average Cost: O(n)
→ More than one way to index a linked list...

17

Skip Lists
Multiple levels of linked lists with extra
pointers to skip over entries.
→ 1st level is a sorted list of all keys.
→ 2nd level links every other key
→ 3rd level links every fourth key
→ Each level has 𝑝 fraction of the keys of one

below it

Maintains keys in sorted order without
requiring global rebalancing.
→ Want: O(log n) search times.

Mostly for in-memory data structures.
→ Example: LSM MemTable

18

http://dl.acm.org/citation.cfm?id=78977

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists Basics
19

∞

∞

∞

E[𝑳𝟏]=N

E 𝑳𝟐 = 𝒑𝑵

E 𝑳𝟑 = 𝒑𝟐𝑵

Flip a coin w/ prob 𝒑 to decide how
many levels to add the new key into.

How many levels in expectation? log𝟏/𝒑 𝑵

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists: INSERT
20

∞

∞

∞

Insert K5

K5

K5

K5

V5

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

Skip Lists: SEARCH
21

∞

∞

∞K3<K5

K3>K2 K3<K4

Find K3

Skip Lists: DELETE

First logically remove a key from the index by
setting a flag to tell threads to ignore.

Then physically remove the key once we know
that no other thread is holding the reference.

22

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

Skip Lists: DELETE
23

∞

∞

∞

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
false

Del?
true

Delete K5

End

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K5

V5

K5

K5

K6

V6

Levels

Skip List Math
24

∞

∞

∞

Find K4

Skip List Math

Question: Expected length to traverse a skiplist
with N keys and link probability 𝑝?

• Let 𝑀 be random variable, path length

Break up the traversal path (moving backwards):

• Move left until up-link

• Move up one level, repeat

• Let 𝑀𝑖 be # left steps before finding an up-link

Main idea: each link is independent, identically
distributed w/ prob 𝒑

25

Skip List Math
26

K1

V1

K2

V2

K3

V3

K4

V4

K6

V6

K5

V5

Question: Starting at any node, how many steps left until up-link?

Question: How many 𝑝-coin flips to get tails?

𝑀𝑖~ 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑝 ; 𝑃𝑟 𝑀𝑖 = 𝑥 = 1 − 𝑝 𝑥−1 𝑝

E 𝑀𝑖 = ෍

𝑥=1

∞

𝑥 ⋅ 1 − 𝑝 𝑥−1 𝑝 =
1

𝑝
Left steps per up-link

(expected)

Skip List Math

Question: Expected length to traverse a skiplist
with N keys and link probability 𝑝?

𝐸 𝑀 = 𝐸[𝑀1 + 𝑀2 + 𝑀3 + ⋯ + 𝑀𝐿−1]

 ≈ 𝐸 𝑀𝑖 ∙ 𝐸 # 𝐿𝑒𝑣𝑒𝑙𝑠

 =
1

𝑝
 ∙ log1

𝑝

𝑁 = 𝑂(log 𝑁)

In other words...

27

It's Log!
28

Skip Lists

Advantages:
→ Uses less memory than a typical B+Tree if you do not

include reverse pointers.
→ Insertions and deletions do not require rebalancing.

Disadvantages:
→ Not disk/cache friendly because they do not optimize

locality of references.
→ Reverse search is non-trivial.

25

We stopped here in class because I decided to focus
more on the internals of Bloom filters and skip lists.

The rest of these slides will not be covered, but cover
some good-to-know data structures for indexing

30

Observation

Both B+Trees and Skip Lists have the same
weakness: Lookup(x) == full traversal

Lookup for keys that don't exist are slow

• "Negative caching", insert tombstone for
objects that don't exist

Want: Best of both worlds. An index data
structure with filter-like properties

31

Trie Index

Use a digital representation of keys
to examine prefixes one-by-one.
→ aka Digital Search Tree, Prefix Tree.

Shape depends on keys and lengths.
→ Does not depend on existing keys or

insertion order.
→ Does not require rebalancing operations.

All operations have O(k) complexity
where k is the length of the key.
→ Path to a leaf node represents a key.
→ Keys are stored implicitly and can be

reconstructed from paths.

32

Keys: HELLO, HAT, HAVE

L

L

O

¤

¤ E

¤

H

A E

VT

Trie Key Span

The span of a trie level is the number of bits that
each partial key / digit represents.
→ If the digit exists in the corpus, then store a pointer to

the next level in the trie branch. Otherwise, store null.

This determines the fan-out of each node and the
physical height of the tree.
→ n-way Trie = Fan-Out of n

33

Trie Key Span

Keys: K10,K25,K31

34

K10→ 00000000 00001010
K25→ 00000000 00011001
K31→ 00000000 00011111

1-bit Span Trie

0 ¤ 1 Ø

0 ¤ 1 Ø

0 ¤ 1 ¤

0 ¤ 1 Ø

0 Ø 1 ¤
0 ¤ 1 Ø

0 ¤ 1 Ø

0 Ø 1 ¤

0 Ø 1 ¤ 0 Ø 1 ¤
0 ¤ 1 ¤

0 Ø 1 ¤
0 Ø 1 ¤

Repeat
10x

¤ Ø

¤ Ø

¤ ¤

¤ Ø

Ø ¤
¤ Ø

¤ Ø

Ø ¤

Ø ¤ Ø ¤
¤ ¤

Ø ¤
Ø ¤

Tuple
Pointer

Node
Pointer

Radix Tree

Vertically compressed trie that
compacts nodes with a single
child.
→ Also known as Patricia Tree.

Can produce false positives, so
the DBMS always checks the
original tuple to see whether a
key matches.

35

1-bit Span Radix Tree

¤ Ø

¤ Ø

¤ ¤
Ø ¤
¤ ¤

Repeat
10x

Tuple
Pointer

Node
Pointer

Observation

The indexes that we've discussed are
useful for "point" and "range" queries:
→ Find all customers in the 15217 zipcode.
→ Find all orders between June 2024 and

September 2024.

They are not good at keyword
searches:
→ Example: Find all Wikipedia articles that

contain the word "Pavlo"

36

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

CREATE INDEX idx_rev_cntnt
 ON revisions (content);

SELECT pageID FROM revisions
 WHERE content LIKE '%Pavlo%';

Inverted Index

An inverted index stores a mapping
of terms to records that contain
those terms in the target attribute.
→ Sometimes called a full-text search

index.
→ Originally called a concordance (1200s).

Many major DBMSs support these
natively. But there are also
specialized DBMSs and libraries.

37

id content

11 Wu-Tang Clan is an American hip hop musical collective formed in Staten Island,
New York City, in 1992...

22 Carnegie Mellon University (CMU) is a private research university in Pittsburgh,
Pennsylvania. The institution was established in 1900 by Andrew Carnegie...

33 In computing, a database is an organized collection of data or a type of data
store based on the use of a database management system (DBMS), the software...

44 Andrew Pavlo, best known as Andy Pavlo, is an associate professor of Computer
Science at Carnegie Mellon University. He conducts research on database...

revisions(id,content,…)

Wu-Tang|2

Carnegie|3

Database|2

Dictionary

⋮

11 44

22 4433

33 44

Posting Lists

Term /
Frequency

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Concordance_(publishing)

Inverted Index: Lucene

Uses a Finite State Transducer for
determining offset of terms in
dictionary.

Incrementally create dictionary
segments and then merge them in
the background.
→ Uses compression methods we

previously discussed (e.g., delta, bit
packing).

→ Also supports precomputed
aggregations for terms and occurrences.

38

Dictionary
BR1

BRAV2

PAV3

PLA4

B
weight=1

P
weight=2

A
weight=1

R
weight=0

A
weight=1

A
weight=0

L
weight=2

V
weight=0

Find PAV

Offset= 340

http://en.wikipedia.org/wiki/Finite_state_transducer
https://towardsdatascience.com/lucene-inside-out-dealing-with-integer-encoding-and-compression-fe28f9dd265d

Inverted Index: PostgreSQL

PostgreSQL's Generalized Inverted
Index (GIN) uses a B+Tree for the
term dictionary that map to a
posting list data structure.

Posting list contents varies
depending on number of records per
term:
→ Few: Sorted list of record ids.
→ Many: Another B+Tree of record ids.

Uses a separate "pending list" log to
avoid incremental updates.

39

Posting Tree

Posting List

Dictionary

mod log

Pending List

Posting List

https://www.postgresql.org/docs/current/gin-intro.html
https://www.postgresql.org/docs/current/gin-intro.html

OBSERVATION

Inverted indexes search data based on its contents.
→ There is a little magic to tweak terms based on linguistic

models.
→ Example: Normalization ("Wu-Tang" matches "Wu Tang").

Instead of searching for records containing exact
keywords (e.g., "Wu-Tang"), an application may
want search for records that are related to topics
(e.g., "hip-hop groups with songs about slinging").

40

Vector Indexes

Specialized data structures to perform nearest-
neighbor searches on embeddings.
→ An embedding is an array of floating point numbers.
→ May also need to filter data before / after vector

searches.

The correctness of a query depends on whether
the result "feels right".

41

Vector Indexes: Inverted File

Partition vectors into smaller groups
using a clustering algorithm.

To find a match, use same clustering
algorithm to map into a group, then
scan that group's vectors.
→ Also check nearby groups to improve

accuracy.

Preprocess / quantize vectors to
reduce dimensionality.

Example: IVFFlat

42

Source: Chi Zhang

https://skyzh.github.io/write-you-a-vector-db/cpp-05-ivfflat.html
https://skyzh.github.io/write-you-a-vector-db

Vector Indexes: Navigable Small Worlds

Build a graph where each node
represents a vector and it has edges
to its n nearest neighbors.
→ Can use multiple levels of graphs

(HNSW)

To find a match for a given vector,
enter the graph and then greedily
choose the next edge that moves
closer to that vector.

Example: Faiss, hnswlib

43

Source: Chi Zhang

https://en.wikipedia.org/wiki/Hierarchical_navigable_small_world
https://faiss.ai/
https://github.com/nmslib/hnswlib
https://skyzh.github.io/write-you-a-vector-db

Conclusion

We will see filters again this semester.

B+Trees are still the way to go for tree indexes.

We did not discuss geo-spatial tree indexes:
→ Examples: R-Tree, Quad-Tree, KD-Tree

44

Next Class

How to make indexes thread-safe!

45

Leaderboard Results

The top 20 fastest valid implementations in the
class will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

Bonuses applied manually at the end. Best
leaderboard performer gets swag/prize TBD

46

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Indexes vs. Filters
	Slide 4: Today's Agenda

	Bloom Filters
	Slide 5: Bloom Filters
	Slide 6: Bloom Filters
	Slide 7: Bloom Filters
	Slide 8: It's Log!
	Slide 9: Log-structured Storage
	Slide 10: Bloom Filter Math
	Slide 11: Bloom Filter Math
	Slide 12: Bloom Filters IRL
	Slide 13: Bloom Filters IRL
	Slide 14: Other Filters

	Skip Lists
	Slide 15: Indexes vs. Filters
	Slide 16: B+Trees as Fancy Linked Lists
	Slide 17: Observation
	Slide 18: Skip Lists
	Slide 19: Skip Lists Basics
	Slide 20: Skip Lists: INSERT
	Slide 21: Skip Lists: SEARCH
	Slide 22: Skip Lists: DELETE
	Slide 23: Skip Lists: DELETE
	Slide 24: Skip List Math
	Slide 25: Skip List Math
	Slide 26: Skip List Math
	Slide 27: Skip List Math
	Slide 28: It's Log!
	Slide 29: Skip Lists
	Slide 30: We stopped here in class because I decided to focus more on the internals of Bloom filters and skip lists. The rest of these slides will not be covered, but cover some good-to-know data structures for indexing

	Radix Trees
	Slide 31: Observation
	Slide 32: Trie Index
	Slide 33: Trie Key Span
	Slide 34: Trie Key Span
	Slide 35: Radix Tree

	Inverted Index
	Slide 36: Observation
	Slide 37: Inverted Index
	Slide 38: Inverted Index: Lucene
	Slide 39: Inverted Index: PostgreSQL

	Vector Indexes
	Slide 40: OBSERVATION
	Slide 41: Vector Indexes
	Slide 42: Vector Indexes: Inverted File
	Slide 43: Vector Indexes: Navigable Small Worlds

	Conclusion
	Slide 44: Conclusion
	Slide 45: Next Class
	Slide 46: Leaderboard Results

