
COMP 421: Files & Databases

Lecture 11: It's Data Structure Week!

(Index Concurrency Control)
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Announcements

Reminder: if you got below an 80 on P1, you 
should have an office hours appointment 
scheduled

There is a gradescope assignment set up for 
Buffer Pool Manager testing: 

 "Buffer Pool Manager: Test Only"
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Observation

We (mostly) assumed all the data structures that 
we have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads 
to safely access data structures to take advantage 
of additional CPU cores and hide disk I/O stalls.
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They Don't Do This!

https://voltdb.com/
https://redis.io/


Concurrency Control

A concurrency control protocol is the method 
that the DBMS uses to ensure “correct” results for 
concurrent operations on a shared object.

 A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is 

supposed to see?
→ Physical Correctness: Is the internal representation of 

the object sound?
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Today's Agenda

Latches Overview

Hash Table Latching

B+Tree Latching

Leaf Node Scans
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Locks vs. Latches

Locks (Transactions)
→ Protect the database's logical contents from other 

transactions.
→ Held for transaction's duration.
→ Need to be able to rollback changes.

Latches (Workers)
→ Protect the critical sections of the DBMS's internal data 

structure from other workers (e.g., threads).
→ Held for operation duration.
→ Do not need to be able to rollback changes.
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Locks vs. Latches

Locks Latches

Separate… Transactions Workers (threads, processes)

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update, 
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Source: Goetz Graefe

Lecture #15
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https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf


Latch Modes

Read Mode
→ Multiple threads can read the same 

object at the same time.
→ A thread can acquire the read latch if 

another thread has it in read mode.

Write Mode
→ Only one thread can access the object.
→ A thread cannot acquire a write latch if 

another thread has it in any mode.
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Read Write

Read X

Write X X

Compatibility Matrix



Latch Implementation Goals

Small memory footprint.

Fast execution path when no contention.

Decentralized management of latches.

Avoid expensive system calls.
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Source: Filip Pizlo

A screenshot of a social media post

Description automatically generated

A picture containing bird

Description automatically generated

https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723


Latch Implementations

Atomic Instructions (i.e., roll your own)

Blocking OS Mutex

Reader-Writer Locks

Advanced approaches:
→ Adaptive Spinlock (Apple ParkingLot)
→ Queue-based Spinlock (MCS Locks)
→ Optimistic Lock Coupling (The Germans)
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https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/


Latch Implementations

Approach #1: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic_flag
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std::atomic_flag latch;
 ⋮
while (latch.test_and_set()) {
   // Retry? Yield? Abort?
}

test_and_set semantics:
-if flag is 1, return TRUE
-if flag is 0, flip it to 1 and 
return FALSE
-executes atomically, 
without using a lock



Latch Implementations

Approach #1: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic_flag
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std::atomic_flag latch;
 ⋮
while (latch.test_and_set()) {
   // Retry? Yield? Abort?
}



Compare-and-swap (CAS)

Atomic instruction that compares contents of a memory 
location M to a given value V
→ If values are equal, installs new given value V’ in M, return TRUE
→ Otherwise, operation fails, return FALSE

See C++11 Atomics
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M
__sync_bool_compare_and_swap(&M, 20, 30)2030

Compare 
Value

Address
New
Value

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/


EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists: INSERT w/ Spin Lock
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∞

∞

∞

Insert K5

K5

K5

K5

V5

Problem: what happen if the INSERT 
thread gets swapped out by the OS?



EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists: INSERT w/ CAS
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∞

∞

∞

Insert K5

K5

K5

K5

V5

Question: why CAS if 64-bit writes are 
already atomic?



Latch Implementations

Approach #2: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

std::mutex m;
 ⋮
m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

pthread_mutex_t
futex

futex

Userspace Latch

OS Latch
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http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html


Latch Implementations

Approach #3: Reader-Writer Latches
→ Allows for concurrent readers. Must manage read/write 

queues to avoid starvation.
→ Can be implemented on top of spinlocks.
→ Example: std::shared_mutex

read write

Latch

=0

=0

=0

=0

=1=2

=1=1

pthread_rwlock_t

pthread_rwlock_t
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pthread_mutex_t

pthread_mutex_tpthread_cond_t

pthread_cond_t

http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html


Hash Table Latching

Easy to support concurrent access due to the 
limited ways threads access the data structure.
→ All threads move in the same direction and only access a 

single page/slot at a time.
→ Deadlocks are not possible.

To resize the table, take a global write latch on the 
entire table (e.g., in the header page).
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Hash Table Latching

Approach #1: Page/Block Latches
→ Each page/block has its own reader-writer latch that 

protects its entire contents.
→ Threads acquire either a read or write latch before they 

access a page/block.

Approach #2: Slot Latches
→ Each slot has its own latch.
→ Can use a single-mode latch to reduce meta-data and 

computational overhead.
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| valueD

| valueE

| valueA

| valueC

Hash Table: Page/Block Latches

| valueB

R
hash(D) 
T1: Find D

R

hash(E) 
T2: Insert E

W

0

1

2

W

It’s safe to release the 
latch on Page #1.
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| valueD

| valueE

| valueA

| valueC

Hash Table: Slot Latches

| valueB

R

R

0

1

2
W

WR

W

hash(D) 
T1: Find D

hash(E) 
T2: Insert E

It’s safe to release the 
latch on A
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B+Tree Concurrency Control

We want to allow multiple threads to read and 
update a B+Tree at the same time.

We need to protect against two types of 
problems:
→ Threads trying to modify the contents of a node at the 

same time.
→ One thread traversing the tree while another thread 

splits/merges nodes.
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38

B+Tree Multi-threaded Example

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

T2: Find 41

41

Rebalance!

41

???
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Latch Crabbing/Coupling

Protocol to allow multiple threads to 
access/modify B+Tree at the same time.
→ Get latch for parent
→ Get latch for child
→ Release latch for parent if “safe”

A safe node is one that will not split or merge 
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)
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Latch Crabbing/Coupling

Find: Start at root and traverse down the tree:
→ Acquire R latch on child,
→ Then unlatch parent.
→ Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down, 
obtaining W latches as needed. Once child is 
latched, check if it is safe:
→ If child is safe, release all latches on ancestors
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Example #1 – FIND 38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

R

R

R

It is now safe to 
release the latch on A.

A

26

T1: Find 38



38 41

Example #2 – DELETE 38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W
We know that D will not 

merge with C, so it is safe to 
release latches on A and B.

We may need to coalesce B, so 
we can’t release the latch on A.
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T1: Delete 38



38 41

Example #3 – INSERT 45

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W

Node I will not split, so 
we can release B+D.

We know that if D needs to 
split, B has room so it is safe 

to release the latch on A.
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T1: Insert 45



Example #4 – INSERT 25

3 4 6 9 10 11 12 13 20 22 23 31

20

6 12 23 31 38 44

A

B

C D

E F

3510

38 4135 36 44

G H I

W

W

W

W
25

We need to split F, so we need to 
hold the latch on its parent node.
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J

29

T1: Insert 25



Observation

What was the first step that all the update 
examples did on the B+Tree?

Taking a write latch on the root every time 
becomes a bottleneck with higher concurrency.

20 A
W

Insert 45

20 A
W

Delete 38

20 A
W

Insert 25
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Better Latching Algorithm

Most modifications to a B+Tree will 
not require a split or merge.

Instead of assuming there will be a 
split/merge, optimistically traverse 
the tree using read latches.

If a worker guesses wrong, repeat 
traversal with pessimistic algorithm.
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https://link.springer.com/article/10.1007/BF00263762


Better Latching Algorithm

Search: Same as before.

Insert/Delete: 
→ Set latches as if for search, get to leaf, and set W latch on 

leaf.
→ If leaf is not safe, release all latches, and restart thread 

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only 
leaf node will be modified; if not, R latches set on 
the first pass to leaf are wasteful.
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38 41

Example #2 – DELETE 38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

R

W

Node H will not coalesce,
so we’re safe!
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T1: Delete 38



38 41

Example #4 – INSERT 25

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

R

W

We need to split F, so we 
have to restart and re-

execute like before.
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T1: Insert 25



Observation

The threads in all the examples so far have 
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is 

below its current node.
→ If the desired latch is unavailable, the thread must wait 

until it becomes available.

But what if threads want to move from one leaf 
node to another leaf node?
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Leaf Node Scan Example #1

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

R R

Do not release latch on C 
until thread has latch on B
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Leaf Node Scan Example #2

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

R R

Both T1 and T2 now 
hold this read latch.

Both T1 and T2 now 
hold this read latch.

Only T1 holds
this read latch.

Only T2 holds
this read latch.

39



Leaf Node Scan Example #3

A

B

3

1 2 3 4

C

T1: Delete 4

T2: Find Keys > 1
R

R W

T2 does not know 
what T1 is doing…

T2 cannot acquire  
the read latch on C

40

T2 Choices?

Wait

Kill Other Thread

Give up



Leaf Node Scans

Latches do not support deadlock detection or 
avoidance. The only way we can deal with this 
problem is through coding discipline.

The leaf node sibling latch acquisition protocol 
must support a “no-wait” mode.

The DBMS's data structures must cope with failed 
latch acquisitions.
→ Usually transparent to end-user / application.
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Conclusion

Making a data structure thread-safe is notoriously 
difficult in practice.

We focused on B+Trees, but the same high-level 
techniques are applicable to other data 
structures.
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Next Class

We are finally going to discuss how to execute 
some queries, starting with JOIN
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Project #2

You will build a thread-safe B+tree 
backed by your buffer pool manager.
→ Page Layout
→ Insert/Delete/Find Operations
→ Iterator
→ Latch Crabbing

We define the API for you. You need 
to provide the method 
implementations.

WARNING:
This is more difficult than Project #1.

Start immediately!
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Tasks

Task #1: Page Layouts
→ How each node will store its key/values in a page.
→ You only need to support unique keys.

Task #2: Operations
→ Support point queries (single key).
→ Support inserts with node splitting.
→ Support removal of keys with sibling stealing + merging.
→ Does not need to be thread-safe.
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Tasks

Task #3: Index Iterator
→ Create a STL iterator for range scans on leaf nodes.
→ You only need to support ascending scans.

Task #4: Concurrent Index 
→ Introduce latch crabbing/coupling protocol to support 

safe concurrent operations.
→ Make sure you have splits / merges working correctly 

before proceeding with this task.
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Development Hints

Follow the textbook semantics and algorithms.

Set the page size to be small (e.g., 512B) when 
you first start so that you can see more 
splits/merges.

Make sure that you protect the internal B+Tree 
root_page_id member.
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Extra Credit

Gradescope Leaderboard runs your code with a 
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class 
will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

You must pass all the test cases to qualify!
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