
COMP 421: Files & Databases

Lecture 11: It's Data Structure Week!

(Index Concurrency Control)

1

Announcements

Reminder: if you got below an 80 on P1, you
should have an office hours appointment
scheduled

There is a gradescope assignment set up for
Buffer Pool Manager testing:

 "Buffer Pool Manager: Test Only"

2

Observation

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads
to safely access data structures to take advantage
of additional CPU cores and hide disk I/O stalls.

3

They Don't Do This!

https://voltdb.com/
https://redis.io/

Concurrency Control

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

 A protocol's correctness criteria can vary:
→ Logical Correctness: Can a thread see the data that it is

supposed to see?
→ Physical Correctness: Is the internal representation of

the object sound?

4

Today's Agenda

Latches Overview

Hash Table Latching

B+Tree Latching

Leaf Node Scans

5

Locks vs. Latches

Locks (Transactions)
→ Protect the database's logical contents from other

transactions.
→ Held for transaction's duration.
→ Need to be able to rollback changes.

Latches (Workers)
→ Protect the critical sections of the DBMS's internal data

structure from other workers (e.g., threads).
→ Held for operation duration.
→ Do not need to be able to rollback changes.

6

Locks vs. Latches

Locks Latches

Separate… Transactions Workers (threads, processes)

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update,
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure

Source: Goetz Graefe

Lecture #15

7

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

Latch Modes

Read Mode
→ Multiple threads can read the same

object at the same time.
→ A thread can acquire the read latch if

another thread has it in read mode.

Write Mode
→ Only one thread can access the object.
→ A thread cannot acquire a write latch if

another thread has it in any mode.

8

Read Write

Read X

Write X X

Compatibility Matrix

Latch Implementation Goals

Small memory footprint.

Fast execution path when no contention.

Decentralized management of latches.

Avoid expensive system calls.

9

Source: Filip Pizlo

A screenshot of a social media post

Description automatically generated

A picture containing bird

Description automatically generated

https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

Latch Implementations

Atomic Instructions (i.e., roll your own)

Blocking OS Mutex

Reader-Writer Locks

Advanced approaches:
→ Adaptive Spinlock (Apple ParkingLot)
→ Queue-based Spinlock (MCS Locks)
→ Optimistic Lock Coupling (The Germans)

10

https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/

Latch Implementations

Approach #1: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic_flag

11

std::atomic_flag latch;
 ⋮
while (latch.test_and_set()) {
 // Retry? Yield? Abort?
}

test_and_set semantics:
-if flag is 1, return TRUE
-if flag is 0, flip it to 1 and
return FALSE
-executes atomically,
without using a lock

Latch Implementations

Approach #1: Test-and-Set Spin Latch (TAS)
→ Very efficient (single instruction to latch/unlatch)
→ Non-scalable, not cache friendly, not OS friendly.
→ Example: std::atomic_flag

12

std::atomic_flag latch;
 ⋮
while (latch.test_and_set()) {
 // Retry? Yield? Abort?
}

Compare-and-swap (CAS)

Atomic instruction that compares contents of a memory
location M to a given value V
→ If values are equal, installs new given value V’ in M, return TRUE
→ Otherwise, operation fails, return FALSE

See C++11 Atomics

13

M
__sync_bool_compare_and_swap(&M, 20, 30)2030

Compare
Value

Address
New
Value

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists: INSERT w/ Spin Lock
14

∞

∞

∞

Insert K5

K5

K5

K5

V5

Problem: what happen if the INSERT
thread gets swapped out by the OS?

EndLevels

K1

V1

K2

K2

V2

K3

V3

K4

V4

K4

K6

V6

Skip Lists: INSERT w/ CAS
15

∞

∞

∞

Insert K5

K5

K5

K5

V5

Question: why CAS if 64-bit writes are
already atomic?

Latch Implementations

Approach #2: Blocking OS Mutex
→ Simple to use
→ Non-scalable (about 25ns per lock/unlock invocation)
→ Example: std::mutex

std::mutex m;
 ⋮
m.lock();
// Do something special...
m.unlock();

pthread_mutex_t

pthread_mutex_t
futex

futex

Userspace Latch

OS Latch

16

http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

Latch Implementations

Approach #3: Reader-Writer Latches
→ Allows for concurrent readers. Must manage read/write

queues to avoid starvation.
→ Can be implemented on top of spinlocks.
→ Example: std::shared_mutex

read write

Latch

=0

=0

=0

=0

=1=2

=1=1

pthread_rwlock_t

pthread_rwlock_t

17

pthread_mutex_t

pthread_mutex_tpthread_cond_t

pthread_cond_t

http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

Hash Table Latching

Easy to support concurrent access due to the
limited ways threads access the data structure.
→ All threads move in the same direction and only access a

single page/slot at a time.
→ Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

18

Hash Table Latching

Approach #1: Page/Block Latches
→ Each page/block has its own reader-writer latch that

protects its entire contents.
→ Threads acquire either a read or write latch before they

access a page/block.

Approach #2: Slot Latches
→ Each slot has its own latch.
→ Can use a single-mode latch to reduce meta-data and

computational overhead.

19

| valueD

| valueE

| valueA

| valueC

Hash Table: Page/Block Latches

| valueB

R
hash(D)
T1: Find D

R

hash(E)
T2: Insert E

W

0

1

2

W

It’s safe to release the
latch on Page #1.

20

| valueD

| valueE

| valueA

| valueC

Hash Table: Slot Latches

| valueB

R

R

0

1

2
W

WR

W

hash(D)
T1: Find D

hash(E)
T2: Insert E

It’s safe to release the
latch on A

21

B+Tree Concurrency Control

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of
problems:
→ Threads trying to modify the contents of a node at the

same time.
→ One thread traversing the tree while another thread

splits/merges nodes.

22

38

B+Tree Multi-threaded Example

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 31 38 44

A

B

C D

E F G H I

3510

T1: Delete 44

T2: Find 41

41

Rebalance!

41

???

23

Latch Crabbing/Coupling

Protocol to allow multiple threads to
access/modify B+Tree at the same time.
→ Get latch for parent
→ Get latch for child
→ Release latch for parent if “safe”

A safe node is one that will not split or merge
when updated.
→ Not full (on insertion)
→ More than half-full (on deletion)

24

Latch Crabbing/Coupling

Find: Start at root and traverse down the tree:
→ Acquire R latch on child,
→ Then unlatch parent.
→ Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is
latched, check if it is safe:
→ If child is safe, release all latches on ancestors

25

Example #1 – FIND 38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 38 41 44

20

6 12 23 38 44

B

C D

E F G H I

3510

R

R

R

R

It is now safe to
release the latch on A.

A

26

T1: Find 38

38 41

Example #2 – DELETE 38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W
We know that D will not

merge with C, so it is safe to
release latches on A and B.

We may need to coalesce B, so
we can’t release the latch on A.

27

T1: Delete 38

38 41

Example #3 – INSERT 45

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44 45

20

6 12 23 38 44

A

B

C D

E F G H I

3510

W

W

W

W

Node I will not split, so
we can release B+D.

We know that if D needs to
split, B has room so it is safe

to release the latch on A.

28

T1: Insert 45

Example #4 – INSERT 25

3 4 6 9 10 11 12 13 20 22 23 31

20

6 12 23 31 38 44

A

B

C D

E F

3510

38 4135 36 44

G H I

W

W

W

W
25

We need to split F, so we need to
hold the latch on its parent node.

31

J

29

T1: Insert 25

Observation

What was the first step that all the update
examples did on the B+Tree?

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

20 A
W

Insert 45

20 A
W

Delete 38

20 A
W

Insert 25

30

Better Latching Algorithm

Most modifications to a B+Tree will
not require a split or merge.

Instead of assuming there will be a
split/merge, optimistically traverse
the tree using read latches.

If a worker guesses wrong, repeat
traversal with pessimistic algorithm.

31

https://link.springer.com/article/10.1007/BF00263762

Better Latching Algorithm

Search: Same as before.

Insert/Delete:
→ Set latches as if for search, get to leaf, and set W latch on

leaf.
→ If leaf is not safe, release all latches, and restart thread

using previous insert/delete protocol with write latches.

This approach optimistically assumes that only
leaf node will be modified; if not, R latches set on
the first pass to leaf are wasteful.

32

38 41

Example #2 – DELETE 38

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

R

W

Node H will not coalesce,
so we’re safe!

33

T1: Delete 38

38 41

Example #4 – INSERT 25

3 4 6 9 10 11 12 13 20 22 23 31 35 36 44

20

6 12 23 38 44

A

B

C D

E F G H I

3510

R

R

R

W

We need to split F, so we
have to restart and re-

execute like before.

34

T1: Insert 25

Observation

The threads in all the examples so far have
acquired latches in a "top-down" manner.
→ A thread can only acquire a latch from a node that is

below its current node.
→ If the desired latch is unavailable, the thread must wait

until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

37

Leaf Node Scan Example #1

A

B

3

1 2 3 4

C

T1: Find Keys < 4
R

R R

Do not release latch on C
until thread has latch on B

38

Leaf Node Scan Example #2

A

B

3

1 2 3 4

C

T1: Find Keys < 4

T2: Find Keys > 1
R

R R

Both T1 and T2 now
hold this read latch.

Both T1 and T2 now
hold this read latch.

Only T1 holds
this read latch.

Only T2 holds
this read latch.

39

Leaf Node Scan Example #3

A

B

3

1 2 3 4

C

T1: Delete 4

T2: Find Keys > 1
R

R W

T2 does not know
what T1 is doing…

T2 cannot acquire
the read latch on C

40

T2 Choices?

Wait

Kill Other Thread

Give up

Leaf Node Scans

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed
latch acquisitions.
→ Usually transparent to end-user / application.

41

Conclusion

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data
structures.

42

Next Class

We are finally going to discuss how to execute
some queries, starting with JOIN

43

Project #2

You will build a thread-safe B+tree
backed by your buffer pool manager.
→ Page Layout
→ Insert/Delete/Find Operations
→ Iterator
→ Latch Crabbing

We define the API for you. You need
to provide the method
implementations.

WARNING:
This is more difficult than Project #1.

Start immediately!

44

Tasks

Task #1: Page Layouts
→ How each node will store its key/values in a page.
→ You only need to support unique keys.

Task #2: Operations
→ Support point queries (single key).
→ Support inserts with node splitting.
→ Support removal of keys with sibling stealing + merging.
→ Does not need to be thread-safe.

45

Tasks

Task #3: Index Iterator
→ Create a STL iterator for range scans on leaf nodes.
→ You only need to support ascending scans.

Task #4: Concurrent Index
→ Introduce latch crabbing/coupling protocol to support

safe concurrent operations.
→ Make sure you have splits / merges working correctly

before proceeding with this task.

46

Development Hints

Follow the textbook semantics and algorithms.

Set the page size to be small (e.g., 512B) when
you first start so that you can see more
splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

47

Extra Credit

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class
will receive extra credit for this assignment.
→ #1: 50% bonus points
→ #2–10: 25% bonus points
→ #11–20: 10% bonus points

You must pass all the test cases to qualify!

48

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Observation
	Slide 4: Concurrency Control
	Slide 5: Today's Agenda

	Latches
	Slide 6: Locks vs. Latches
	Slide 7: Locks vs. Latches
	Slide 8: Latch Modes
	Slide 9: Latch Implementation Goals
	Slide 10: Latch Implementations
	Slide 11: Latch Implementations
	Slide 12: Latch Implementations
	Slide 13: Compare-and-swap (CAS)
	Slide 14: Skip Lists: INSERT w/ Spin Lock
	Slide 15: Skip Lists: INSERT w/ CAS
	Slide 16: Latch Implementations
	Slide 17: Latch Implementations

	Hash Table Latching
	Slide 18: Hash Table Latching
	Slide 19: Hash Table Latching
	Slide 20: Hash Table: Page/Block Latches
	Slide 21: Hash Table: Slot Latches

	Latch Crabbing/Coupling
	Slide 22: B+Tree Concurrency Control
	Slide 23: B+Tree Multi-threaded Example
	Slide 24: Latch Crabbing/Coupling
	Slide 25: Latch Crabbing/Coupling
	Slide 26: Example #1 – FIND 38
	Slide 27: Example #2 – DELETE 38
	Slide 28: Example #3 – INSERT 45
	Slide 29: Example #4 – INSERT 25

	Optimistic Coupling
	Slide 30: Observation
	Slide 31: Better Latching Algorithm
	Slide 32: Better Latching Algorithm
	Slide 33: Example #2 – DELETE 38
	Slide 34: Example #4 – INSERT 25

	Leaf Node Scans
	Slide 37: Observation
	Slide 38: Leaf Node Scan Example #1
	Slide 39: Leaf Node Scan Example #2
	Slide 40: Leaf Node Scan Example #3
	Slide 41: Leaf Node Scans

	Conclusion
	Slide 42: Conclusion
	Slide 43: Next Class

	Project #2
	Slide 44: Project #2
	Slide 45: Tasks
	Slide 46: Tasks
	Slide 47: Development Hints
	Slide 48: Extra Credit

