COMP 421: Files & Databases

Lecture 11: It's Data Structure Week!
(Index Concurrency Control)

COMPUTER SCIENCE

2
Announcements

Reminder: if you got below an 80 on P1, you
should have an office hours appointment
scheduled

There is a gradescope assignment set up for
Buffer Pool Manager testing:

"Buffer Pool Manager: Test Only"

We (mostly) assumed all the data structures that
we have discussed so far are single-threaded.

A modern DBMS needs to allow multiple threads
to safely access data structures to take advantage
of additional CPU cores and hide disk 1/O stalls.

K They Don't Do This!

VYOLTDB KX

Redles [@-Store

https://voltdb.com/
https://redis.io/

Concurrency Control

A concurrency control protocol is the method
that the DBMS uses to ensure “correct” results for
concurrent operations on a shared object.

A protocol's correctness criteria can vary:

— Logical Correctness: Can a thread see the data that it is
supposed to see?

— Physical Correctness: Is the internal representation of
the object sound?

Today's Agenda 5

Latches Overview
Hash Table Latching
B+Tree Latching
Leaf Node Scans

COMPUTER SCIENCE

Locks vs. Latches 6

Locks (Transactions)

— Protect the database's logical contents from other
transactions.

— Held for transaction's duration.

— Need to be able to rollback changes.

Latches (Workers)

— Protect the critical sections of the DBMS's internal data
structure from other workers (e.g., threads).

— Held for operation duration.

— Do not need to be able to rollback changes.

ENT OF
COMPUTER SCIENCE

Lecture #15 "

Locks vs. Latches

Locks

Latches

Separate...
Protect...
During...
Modes...

Deadlock
...by...

Keptin...

Source: Goetz Graefe

i UNC

lﬁ DEPARTMENT OF
COMPUTER SCIENCE

Transactions
Database Contents
Entire Transactions

Shared, Exclusive, Update,
Intention

Detection & Resolution
Waits-for, Timeout, Aborts

Lock Manager

Workers (threads, processes)
In-Memory Data Structures
Critical Sections

Read, Write

Avoidance
Coding Discipline

Protected Data Structure

https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf

Latch Modes 8

Read Mode

H Multiple threads Can read the Same -
object at the same time. Compatibility Matrix

— A thread can acquire t.he read latch if Read Write
another thread has it in read mode. — v; X

Write Mode Write| X X

— Only one thread can access the object.
— A thread cannot acquire a write latch if
another thread has it in any mode.

I I m e m O ry implementing his own Spinlocks in user Space with no regard for whether the lock user might be sche&uled or not, And the code used for the
Sma | :

t . That's pure garbage. What happens is that
F a St e Xe C u I O (a} since you're Spinning, you're using CPy time

(b) at a random time, the scheduler will schedule yoy oyt

~ n+,.,.\|;-;r\ hl (c) that random lime might ne just after ..
ncon u Ime" yoy
. e, unless yo

t: do not use spinlocks_ln us.el'c'j sza:w; o that the
I repelal - know what you're dOIng- And in iS baSica"y nil' [to your
a:t:!r?ogd that you know what you are doing n
. e I hem like that d wh d
I I ToNSensical values, becayse ;/‘f;;t‘;'ou arecm::snu(:i‘:l; 12,1-; ;ia?fe : fo?,;f ;,smml ’

Source: Filip Pizlo
| UNC

NT OF
DEPARTMEN 1
COMPUTER SCIENCE

https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

Back in August 2015 we replaced all spinlocks and OS-provided Mmutexes in WebKit with the new
WTF::Lock (WTF stands for Weh Te b
i tex o e
Blocking OS Mu
Reader-Writer Lock

ytes or more. The small size of WTE: ‘Lock means that
there’s rarely an excuse for not having one, or even multiple fine_rrainaa . s in any object that
nrnach hac thinme
Achrancar an WTF: :Lock is 64 times smaller and up to 180 fuisition. Parale|
Compared to OS-provided locks like pthread_mutex | Ik thread_cond , WTF::Condition is ek mature
0} . e iab iKe p _ 1 o loc when
ariaples .
imes faster. Compared to OS-provided condition v means that WebKit is 10% faster on oy,
o ‘ ller. Using WTF::Lock instead of pthread_mutex ding test threads are
64 times smaller. - . n our page loading test.
m, 5% faster on Speedometer, and 5% faster o P contended and
JetStrea L STSTOTTTNIS Means that shortly after any failing lock attempt, the lock will
become availaple again since no thread will hold the lock for long. This is the most common kind of
contention in paralle| code, since it's common to go to great pains to do very little work whije
holding a lock.

4. WTIF::Lock doesn’t waste CPU cycles when alock
adaptive: it changes its strate

it has been trying. If
calling thread unti t
~

is held for g long time. WTF: :Lock is

gy for how to wait for the lock to become available based on how
the lock doesn't become available promptly,

he lock becomes available,

long
WTF::Lock wil suspend the
=N
1L

F
DEPARTMENT O
COMPUTER SCIENCE

https://webkit.org/blog/6161/locking-in-webkit/
https://lwn.net/Articles/590243/
https://sites.computer.org/debull/A19mar/p73.pdf
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/

Latch Implementations

Approach #1: Test-and-Set Spin Latch (TAS)

— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.

— Example: std: :atomic_flag

std: :atomic_flag latch;

while (latch.test_and_set()) {
// Retry? Yield? Abort?

test and _set semantics:
-if flag is 1, return TRUE

-if flagis O, flipitto 1 and
return FALSE

-executes atomically,
without using a lock

Latch Implementations

Approach #1: Test-and-Set Spin Latch (TAS)
— Very efficient (single instruction to latch/unlatch)
— Non-scalable, not cache friendly, not OS friendly.
— Example: std: :atomic_flag

. <bool>
. 1;omlC<b
Not std: 0O

std: :atomic_flag latch;

while (latch.test_and_set()) {
// Retry? Yield? Abort?

3

Compare-and-swap (CAS)

Atomic instruction that compares contents of a memory

location Mto a given value V

— |If values are equal, installs new given value V’ in M, return TRUE
— Otherwise, operation fails, return FALSE

See C++11 Atomics

I New
M Adaress Value

2@ __sync_bool_compa re_and_swap(&ﬁ, 2?, 36) V

é DEPARTMENT OF Value
COMPUTER SCIENCE

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

Skip Lists: INSERT w/ Spin Lock

Insert K

Problem: what happen if the INSERT End

Levels
thread gets swapped out by the OS?

COMPUTER SCIENCE

Skip Lists: INSERT w/ CAS

Insert K ;
Levels Question: why CAS if 64-bit writes are End
already atomic?
T
o | K,| ® " K,
* *
.I{' v
o k| o 1, | & &, | & &,
V, V, v, v,

Latch Implementations

Approach #2: Blocking OS Mutex

— Simple to use

— Non-scalable (about 25ns per lock/unlock invocation)

— Example: std: :mutex — pthread_mutex_t — futex

B os Latch
std: :mutex m; B Userspace Latch

m.lock(); a g
// Do something special. ..
m.unlock();

| UNC

COMPUTER SCIENCE

http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

Latch Implementations

Approach #3: Reader-Writer Latches
— Allows for concurrent readers. Must manage read/write

queues to avoid starvation. » pthread_mutex_t
— Can be implemented on top of spinlocks. » pthread_cond_t
— Example: std: :shared_mutex — pthread_rwlock_t

6660 8-

read wrlte
| e, A= B B

0-2

http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html
http://man7.org/linux/man-pages/man7/futex.7.html

Hash Table Latching

Easy to support concurrent access due to the

limited ways threads access the data structure.

— All threads move in the same direction and only access a
single page/slot at a time.

— Deadlocks are not possible.

To resize the table, take a global write latch on the
entire table (e.g., in the header page).

ENT
COMPUTER SCIENCE

COMPUTER SCIENCE

Hash Table Latching

Approach #1: Page/Block Latches

— Each page/block has its own reader-writer latch that
protects its entire contents.

— Threads acquire either a read or write latch before they
access a page/block.

Approach #2: Slot Latches

— Each slot has its own latch.

— Can use a single-mode latch to reduce meta-data and
computational overhead.

Hash Table: Page/Block Latches

[It’s safe to release the

latch on Page #1.
T,: Find D X T,: Insert E
hash(D) hash(E)

COMPUTER SCIENCE

Hash Table: Slot Latches

T,: Find D T,: Insert E
h al It’s safe to release the 'R) hash(E)
latchon A -

COMPUTER SCIENCE

COMPUTER SCIENCE

B+Tree Concurrency Control

We want to allow multiple threads to read and
update a B+Tree at the same time.

We need to protect against two types of

problems:

— Threads trying to modify the contents of a node at the
same time.

— One thread traversing the tree while another thread
splits/merges nodes.

B+Tree Multi-threaded Example

ol 1A « T,: Delete 44

/ T,: Find 41

10 35 B

6 12 H{ C%g 41||D g

Rebalance!

X

w
N
I
(@)}
(o)
—
S

1MA12(1320(22723|31735|36[] 34

COMPUTER SCIENCE

ENT OF
COMPUTER SCIENCE

Latch Crabbing/Coupling

Protocol to allow multiple threads to

access/modify B+Tree at the same time.
— Get latch for parent

— Get latch for child
— Release latch for parent if “safe”

A safe node is one that will not split or merge

when updated.

— Not full (on insertion)
— More than half-full (on deletion)

COMPUTER SCIENCE

Latch Crabbing/Coupling

Find: Start at root and traverse down the tree:

— Acquire R latch on child,
— Then unlatch parent.
— Repeat until we reach the leaf node.

Insert/Delete: Start at root and go down,
obtaining W latches as needed. Once child is

latched, check if it is safe:
— If child is safe, release all latches on ancestors

Example #1 — FIND 38

2@ A 4@ T,: Find 38
/ R

10 35 B

It is now safe to
release the latch on A. | R
6 T2 73

J A L\ \

110[11112]1320|22[23]31
E F

w
N
o
To)

Example #2 — DELETE 38

@»2@ A 4@ T,: Delete 38
/ W

10 35 B

[We may need to coalesce B, so
we can’t release the latch on A.

6 12 23 8|l44||D

j \4 ‘l' We know that D will not
1144

merge with C, so it is safe to
110]11 release latches on A and B.

E F G H |

w
1SN
(@))]
O

=)

DEPARTMENT OF
COMPUTER SCIENCE

Example #3 — INSERT 45

@»2@ A « T,: Insert 45
/ W

10 35 B
We know that if D needs to
split, B has room so it is safe
6 to release the latch on A. 241D
3140619010[11R12({13120(22023(31135(36738(41

Node I will not split, so I
we can release B+D.

Example #4 — INSERT 25

@»2@ A « T,: Insert 25

10

J |

3140619 '
fWe need to spllt F so we need to = |: G = |
UNC

hold the latch on its parent node.

”j‘
lﬁ DEPARTMENT OF
COMPUTER SCIENCE

COMPUTER SC

Observation

What was the first step that all the update
examples did on the B+Tree?

Delete 38 Insert 45 Insert 25
<I>»20 A mﬁze A mﬁze

Taking a write latch on the root every time
becomes a bottleneck with higher concurrency.

OF
IENCE

Better Latching Algorithm

Most modifications to a B+Tree will o
not require a split or merge. o

Concurrency of Operations on B-Trees

. .
R. Bayer* and M. Schkolnick
l l S ‘ a O a SS u I I I I I lg e re WI e a 1BM Research Laboratory, San José, CA 95193, USA
Summary. Concurrent operations on B-trees pose the problem of insuring

: M . M that each operation can be carried out without interfering with other opera-
S | rT] e r e O | n’] | S | C a r‘ a Ve r‘S e tions being performed simultancously by other users. This problem can
’ become critical if these structures are being used to support access paths,

like indexes, to data base systems. In this case, serializing access to one of
these indexes can create an unacceptable bottleneck for the entire system.

. Thus, there is a need for locking protocols that can assure integrity for each
access while at the same time providing a maximum possible degree of con-
° currency. Another feature required from these protocols is that they be

deadlock free, since the cost to resolve a deadlock may be high.

Recently, there has been some questioning on whether B-tree structures
can support concurrent operations. In this paper, we examine the problem
of concurrent access to B-trees. We present a deadlock free solution which
can be tuned 1o specific requirements. An analysis is presented which allows
the selection of parameters so as to satisfy these requirements.

If a worker guesses wrong, repeat R RS

1. Introduction

L] L] L] L) L]

In this paper, we examine the problem of concurrent access to indexes which
raversal wi essimistic aleorithm e o e e
. and McCreight [2] and some variants of it appear in Knuth [10] and Wedekind
[13]. Performance studies of it were restricted to the single user environment.
Recently, these structures have been examined for possible use in a multi-user
(concurrent) environment. Some initial studies have been made about the feasi-

bility of their use in this type of situation [1, 6], and [11].
An accessing schema which achieves a high degree of concurrency in using
the index will be presented. The schema allows dynamic tuning to adapt its
performance to the profile of the current set of users. Another property of the

* Permanent address: Institut fiir Informatik der Technischen Universitit Minchen, Arcisstr. 21,
D-8000 Miinchen 2, Germany (Fed. Rep)

DEPARTMENT OF
COMPUTER SCIENCE

fl | UNC

https://link.springer.com/article/10.1007/BF00263762

Better Latching Algorithm

Search: Same as before.

Insert/Delete:

— Set latches as if for search, get to leaf, and set W latch on
leaf.

— |If leaf is not safe, release all latches, and restart thread
using previous insert/delete protocol with write latches.

This approach optimistically assumes that only
leaf node will be modified; if not, R latches set on
the first pass to leaf are wasteful.

Example #2 — DELETE 38

A 4@ T,: Delete 38
/ R
10
12 23
J V1 N/)
3 9 n10|1112(13120(22F

[

Node H will not coalesce, I
so we’re safe!

Example #4 — INSERT 25

2@ A « T,: Insert 25

10
6 12 D
3j 4 DTS rr— 2 35136138 4}14
We need to split F, so we
have to restart and re- G H I

fl |UNC execute like before.

Observation

The threads in all the examples so far have

acquired latches in a "top-down" manner.

— A thread can only acquire a latch from a node that is
below its current node.

— |f the desired latch is unavailable, the thread must wait
until it becomes available.

But what if threads want to move from one leaf
node to another leaf node?

COMPUTER SCIENCE

Leaf Node Scan Example #1

T;: Find Keys < 4

I - 4
Do not release latch on C]

until thread has latch on B

COMPUTER SCIENCE

Leaf Node Scan Example #2

T;: Find Keys < 4

, . Find Keys > 1
I Only T, holds
this read latch. .

Only T, holds
h{ this read latch.

COMPUTER SCIENCE

Leaf Node Scan Example #3

T;: Delete 4
-] 0. A T7: F|nd KeyS>1

T, cannot acquire
the read latch on C

T, Choices?

X Wait -
&y Give up ’k
p& Kill Other Thread B C c

T, does not know
what T, is doing...

Leaf Node Scans

Latches do not support deadlock detection or
avoidance. The only way we can deal with this
problem is through coding discipline.

The leaf node sibling latch acquisition protocol
must support a “no-wait” mode.

The DBMS's data structures must cope with failed

latch acquisitions.
— Usually transparent to end-user / application.

Conclusion

Making a data structure thread-safe is notoriously
difficult in practice.

We focused on B+Trees, but the same high-level
techniques are applicable to other data

structures.

ENT
COMPUTER SCIENCE

Next Class

We are finally going to discuss how to execute
some queries, starting with JOIN

COMPUTER SCIENCE

Project #2

You will build a thread-safe B+tree

backed by your buffer pool manager.
— Page Layout

— Insert/Delete/Find Operations

— Iterator

— Latch Crabbing

We define the API for you. You need
to provide the method
implementations.

WARNING:

_ This is more difficult than Project #1.
I PING . Start immediately!

Tasks

Task #1: Page Layouts
— How each node will store its key/values in a page.
— You only need to support unique keys.

Task #2: Operations

— Support point queries (single key).

— Support inserts with node splitting.

— Support removal of keys with sibling stealing + merging.
— Does not need to be thread-safe.

COMPUTER SCIENCE

Tasks

Task #3: Index Iterator

— Create a STL iterator for range scans on leaf nodes.
— You only need to support ascending scans.

Task #4: Concurrent Index

— Introduce latch crabbing/coupling protocol to support
safe concurrent operations.

— Make sure you have splits / merges working correctly
before proceeding with this task.

COMPUTER SCIENCE

Development Hints

Follow the textbook semantics and algorithms.

Set the page size to be small (e.g., 512B) when
you first start so that you can see more
splits/merges.

Make sure that you protect the internal B+Tree
root_page_id member.

Extra Credit

Gradescope Leaderboard runs your code with a
specialized in-memory version of BusTub.

The top 20 fastest implementations in the class

will receive extra credit for this assignment.

— #1:50% bonus points
— #2-10: 25% bonus points
— #11-20: 10% bonus points

You must pass all the test cases to qualify!

COMPUTER SCIENCE

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Observation
	Slide 4: Concurrency Control
	Slide 5: Today's Agenda

	Latches
	Slide 6: Locks vs. Latches
	Slide 7: Locks vs. Latches
	Slide 8: Latch Modes
	Slide 9: Latch Implementation Goals
	Slide 10: Latch Implementations
	Slide 11: Latch Implementations
	Slide 12: Latch Implementations
	Slide 13: Compare-and-swap (CAS)
	Slide 14: Skip Lists: INSERT w/ Spin Lock
	Slide 15: Skip Lists: INSERT w/ CAS
	Slide 16: Latch Implementations
	Slide 17: Latch Implementations

	Hash Table Latching
	Slide 18: Hash Table Latching
	Slide 19: Hash Table Latching
	Slide 20: Hash Table: Page/Block Latches
	Slide 21: Hash Table: Slot Latches

	Latch Crabbing/Coupling
	Slide 22: B+Tree Concurrency Control
	Slide 23: B+Tree Multi-threaded Example
	Slide 24: Latch Crabbing/Coupling
	Slide 25: Latch Crabbing/Coupling
	Slide 26: Example #1 – FIND 38
	Slide 27: Example #2 – DELETE 38
	Slide 28: Example #3 – INSERT 45
	Slide 29: Example #4 – INSERT 25

	Optimistic Coupling
	Slide 30: Observation
	Slide 31: Better Latching Algorithm
	Slide 32: Better Latching Algorithm
	Slide 33: Example #2 – DELETE 38
	Slide 34: Example #4 – INSERT 25

	Leaf Node Scans
	Slide 37: Observation
	Slide 38: Leaf Node Scan Example #1
	Slide 39: Leaf Node Scan Example #2
	Slide 40: Leaf Node Scan Example #3
	Slide 41: Leaf Node Scans

	Conclusion
	Slide 42: Conclusion
	Slide 43: Next Class

	Project #2
	Slide 44: Project #2
	Slide 45: Tasks
	Slide 46: Tasks
	Slide 47: Development Hints
	Slide 48: Extra Credit

