COMP 421: Files & Databases

Lecture 6: Column Stores and Compression

COMPUTER SCIENCE

Announcements

Project 1 is due 9/29

If you have not started, you are now behind

COMPUTER SCIENCE

Storage so far 3

We discussed storage architecture alternatives to

tuple-oriented scheme.

— Buffer pool for memory mgmt
— Heap file with slotted pages
— Log-structured storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads
may be read (SELECT) performance...

COMPUTER SCIENCE

Today's Agenda 4

Database Workloads
Storage Models
Data Compression

COMPUTER SCIENCE

Database Workloads 5

On-Line Transaction Processing (OLTP)
— Fast operations that only read/update a small amount of
data each time.

On-Line Analytical Processing (OLAP)
— Complex queries that read a lot of data to compute
aggregates.

Hybrid Transaction + Analytical Processing
— OLTP + OLAP together on the same database instance

Database Workloads

Operation Complexity

COMPUTER SCIENCE

Complex

Simple

OLTP

LAP

Write-Heavy

Read-Heavy

Workload Focus

Jim Gray

Source: Mike Stonebraker

http://cacm.acm.org/magazines/2011/6/108651
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://www.nap.edu/read/12473/chapter/15#82

Wikipedia Example 7

CREATE TABLE useracct (CREATE TABLE pages (
userID INT PRIMARY KEY, pageID INT PRIMARY KEY,
userName VARCHAR UNIQUE, title VARCHAR UNIQUE,
; latest INT
); —® YL REFERENCES revisions (revID),
A);
A

CREATE TABLE revisions (

revID INT PRIMARY KEY,
® userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pagelD),®
content TEXT,

updated DATETIME

);

COMPUTER SCIENCE

The relational model does not specify that the
DBMS must store all a tuple's attributes together
in a single page.

This may not actually be the best layout for some
workloads...

COMPUTER SCIENCE

OLTP 9

On-line Transaction Processing:
. . SELECT P.*, R.*
— Simple queries that read/update a small FROM pages AS P
amount of data that is related to a single | \nER JOIN revisions AS R
entity in the database. ON P.latest = R.revID

WHERE P.pagelD = ?

This is usually the kind of application

that people build first. UPDATE useracct
SET lastLogin = NOW(),

hostname = ?
WHERE userID = ?

INSERT INTO revisions
VALUES (?,2..,7)

OLAP

On-line Analytical Processing:

— Complex queries that read large portions
of the database spanning multiple
entities.

You execute these workloads on the
data you have collected from your
OLTP application(s).

COMPUTER SCIENCE

SELECT COUNT(U.lastLogin),
EXTRACT(month FROM
U.lastLogin) AS month
FROM useracct AS U
WHERE U.hostname LIKE '%.gov'
GROUP BY
EXTRACT(month FROM U.lastLogin)

Storage Models

A DBMS's storage model specifies how it

physically organizes tuples on disk and in memory.

— Can have different performance characteristics based on
the target workload (OLTP vs. OLAP).
— Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)
Choice #2: Decomposition Storage Model (DSM)
Choice #3: Hybrid Storage Model (PAX)

N-ary Storage Model (NSM)

The DBMS stores (almost) all attributes for a
single tuple contiguously in a single page.
— Also commonly known as a row store

Ideal for OLTP workloads where queries are more
likely to access individual entities and execute
write-heavy workloads.

NSM database page sizes are typically some

constant multiple of 4 KB hardware pages.
— See Lecture #03

https://15445.courses.cs.cmu.edu/fall2024/schedule.html#sep-04-2024
https://15445.courses.cs.cmu.edu/fall2024/schedule.html#sep-04-2024

NSM: Physical Organization

A disk-oriented NSM system stores a ColA ColB ColC
tuple's fixed-length and variable- —— -
. . . Oow a C
length attributes contiguously in a Row 2
single slotted page. Row #3
Row #4
. . Row #5 5 b5 -
The tuple's record id (page#, slot#) is > L
how the DBMS uniquely identifies a Slot Array
physical tuple. Y , : \
QB. header
eader b heaader B
D4 4 heade a S
E heaaer B¢ oea - header [
8 b heaader I 0

COMPUTER SCIENCE

NSM: OLTP Example

WHERE userName = ?
AND userPass = ?

SELECT * FROM useracct

INSERT INTO useracct
VALUES (?,7,..7)

»

Index

Next class!

$

NSM Disk Page
header | userID JuserNamefuserPass|hostname| lastlLogin |
header | userID JuserNamefuserPass|hostname| lastlLogin
header | userID JuserNamefuserPassfhostname| lastlLogin
header | userID JuserNamefuserPass|hostname| lastlLogin

Disk
fl| UNC

DEPARTMENT OF
COMPUTER SCIENCE

Database File

NSM: OLAP Example

SELECT COUNW(u.lastLoginD,
EXTRACT(month FROM [U.lastlLogin) AS month

FROM useracct AS U

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

header | userID JuserName - lastlogin

header | userID JuserName Jhostnamej lastlLogin

header | userID JuserName Jhostnamef] lastlogin

header W userID JuserName 9 lastlogin
\ R 4

QUseIess Data!

o e

Database File

COMPUTER SCIENCE

NSM: SUMMARY

Advantages

— Fast inserts, updates, and deletes.

— Good for queries that need the entire tuple (OLTP).
— Can use index-oriented physical storage for clustering.

Disadvantages

— Not good for scanning large portions of the table and/or
a subset of the attributes.

— Terrible memory locality in access patterns.

— Not ideal for compression because of multiple value
domains within a single page.

Decomposition Storage Model (DSM)

Store a single attribute for all tuples

contiguously in a block of data.
— Also known as a "column store"

Ideal for OLAP workloads where read
only queries perform large scans over
a subset of the table’s attributes.

DBMS is responsible for
combining/splitting a tuple's
attributes when reading/writing.

| UNC

DEPARTMENT OF
COMPUTER SCIENCE

A DECOMPOSITION STORAGE MODEL

Hicrsslactronics dnd Tachaology Compotar Corporation
Research 8
et N

Abstract

This report examines the relative advantag

ng 8 surrogate and one attribute) over
Convantlonal -ary storeze wodels

seems to be u gemeral consensus snong
(he detabese coumenity that the n-ars approtch 1o
battar | This conclusion In wewslly based on @
con o = 3¢ By see or tey sl o

e purpose of this Teport
Lain that decomporition In bevter | inatent, ve

such an analysis
slmplicity, geserality
SPlath birforetace amd reteleral parformmace

1 INTRODUCTION

example, the conceptual schema relation

| ar| viT| vt var
| 92| viz| vaz| vazj
| 23] vial vzal va3

containe a surrogate for record i y and three
attributes per record The WSN would store =i,
V1L 21 and ¥81 toged

r for each record

Permission copy wahous fee all o pars of this macasal s granied
pravded that the copies are st made or distrbted for direet

publication and s oo 1 s Lk opng
o e A fn Compating b
T o et s s s e i s

© 1985 ACM 0-89791-160-1/85/005/0268 $00 75

Some Seiabamn wprtoms wee u fully trusspoeed
ste R (Lorie wAd Symond
197D Y 100 (Wiedereotd ot 41 10780 RAPTD. (Torner
et a1 1079), ALDS (Burnett s 1981, Delta
Uibayam =t 2l 165 and- (Tamra. 1088) " Thia
approsch stores all values of the seae attribate of
& conceptusl schems relation togsther Seversl
studies have coapared the perforaance of transpased
siorass wotels with the WM (Hotfer Iora. Batory
917, Narch and

would be stored

sl vaa] psilwal o | owif van
| sz| viz| | ez wez| | w2f vaz
33l vial 1 sl wes

In Maitien, e DX stares tw cosles of ench
1s clustered on

cher Ciivteredon the

20 statesents apply omly to bas

To aupport the

and finel results

If a richer data

satermediate snd final
correspondingly richer repres:

This report compares these two storage models
Section 2 compares the
generality of the twn
3 e t

par
conpares
performance Section 5 compores their retrieval
performance Finally, Section

45 suEEests dame tofinems:

for the

2 SINPLICITY AND GENERALITY

s Section comares the tra storage madels
to illustrate thelr relative slmpliclty

peneralivy others. (brial 2ona. petipanat ond
Kowalski 1077, Kowslski 1978, Codd 1970) have

ArSued for the semuntic clicity e swerslity of
- sl fact nmvm—ny within
nin the

https://doi.org/10.1145/971699.318923

DSM: Physical Organization

Store attributes and meta-data (e.g.,

nulls) in separate arrays of fixed-length

values.

— Most systems identify unique physical
tuples using offsets into these arrays.

— Need to handle variable-length values...

Maintain separate pages per attribute

with a dedicated header area for meta-
data about entire column.

m | UNC
” | DEPARTMENT OF
COMPUTER SCIENCE

Page #3 Page #2 Page #1

ColA|| ColB ColC
Row #o | [RECN (| I | =
Row #1
Row #2
Row #3
Row #4
Row #5
heaader null bitmap
a0 al a2 a3 a4 ab
header null bitmap
b0 bl b2 b3 b4 b5
header null bitmap
cl c2 c3 (o}

o0 0
(G2 I

DSM: OLAP Example

FROM useracct AS U

SELECT COUNW(u.lastLoginD,
EXTRACT(month FROM [U.lastlLogin) AS month

WHERE |U.hostname] LIKE '%.gov'
GROUP BY EXTRACT(month FROM U.lastlLogin)

/| DSM Disk Page

header | userID JuserNamejuserPassffhostnamef] lastlLogin
userID s
[laStLogln header | userID JuserNamefuserPassfjhostname] lastlLogin
header | userID JuserNamefuserPassfhostname] lastlogin
—
= S
— —— | T header | userID JuserNamefuserPassfjhostname] lastlLogin
userName |~ N

Disk

Database File

| userPass]

fl | UNC

DEPARTMENT OF
COMPUTER SCIENCE

DSM: Tuple Identification

Choice #1: Fixed-length Offsets

— Each value is the same length for an attribute.

\/

*
Don't
Do This!

Offsets

Ao fcfo

w NN 2

Q » Choice #2: Embedded Tuple Ids

— Each value is stored with its tuple id in a column.

Embedded Ids
A B0 3 BN
0 0 0 0
1 1 1 1
. 2 2 2
3 3 3 3

DSM: Variable-length Data

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large
attributes.

A better approach is to use dictionary
compression to convert repetitive variable-length
data into fixed-length values (typically 32-bit
integers).

— More on this later in this lecture...

Decomposition Storage Model (DSM)

Advantages

— Reduces the amount wasted I/O per query because the
DBMS only reads the data that it needs.

— Faster query processing because of increased locality
and cached data reuse (Lecture #13).

— Better data compression.

Disadvantages
— Slow for point queries, inserts, updates, and deletes
because of tuple splitting/stitching/reorganization.

COMPUTER SCIENCE

https://15445.courses.cs.cmu.edu/fall2024/schedule.html#oct-21-2024

Observation

OLAP queries almost never access a single column

in a table by itself.

— At some point during query execution, the DBMS must
get other columns and stitch the original tuple back
together.

But we still need to store data in a columnar

format to get the storage + execution benefits.

We need columnar scheme that still stores
attributes separately but keeps the data for each
tuple physically close to each other...

PAX Storage Model

Partition Attributes Across (PAX) is a
hybrid storage model that vertically
partitions attributes within a

database page.
— Examples: Parquet, ORC, and Arrow.

The goal is to get the benefit of
faster processing on columnar
storage while retaining the spatia
ocality benefits of row storage.

| UNC

DEPARTMENT OF
COMPUTER SCIENCE

‘Weaving Relations for Cache Performance

Anastassia Ailamaki David J. DeWitt
M,

Camegic Mellon University Univ. of Wisconsin-Madison
natassa@ cs.co.edu dewiti@cs.wisc.edu
Abstract

Relatiomal database systeres have traditionaly optimsed for
10 performance and organized records sequentialiy ou disk
pages using the Neary Storage Madel (NS fak.a. stoned
pages) Recent research, hawever, indicates that cache wiilization
and performanee is becoming increasingly important an modern
plaforms. I his papes. we firss demensirate thar in-page data
placement is the key to high cache performance and that NSM
exhiits low cache wiilization on madern platfors. Nexi, we pro-
pose a meww data organization model called PAX. (Partition
Auribites Acwoss), that siguificantly fmprres cache perfor-
mance by groupiag wgether all values of cach attribue within
each page. Because PAX anly affects layout inside the pages. it
incurs no storage pemalty and dves not affect WO behavior
Acconding i our experimental resu
fa) PAX exhibis superior coche and mremiory bondwidth uiiliz-
tion, saving at least 75% of NSM stall fime duc to data cache
accesses, () range selection queevies and wpdaics on memory-
resident pelations execure 17-25% faster, and (c) TPC-H queries
invalvinng O excete H-A48 fuster

1 Introduction

The communication between the CPU and the secondary
storage (1/0) has been traditionally recognized as the
‘major datuhase performance bollleneck. To optimize data
transfer 10 and from mass storage, relational DBMSs have
long organived records in sloted disk pages using the N-
ary Storage Model (NSM). NSM stores records contigu-
ously starting from the beginning of each disk page, and
uses an offsed (slot) table at the end of the page o locate
the beginning of cach record [27).

Unfortunately. most queries use only . fraction of
imize unnecessary VO, the Decompo-
sition Storage Model (DSM) was. proposed in 1985 (10]
DSM partitions an n-atribute relation vertically into n
subrelations. each of which i accessed only when the
comesponding atribute is needed. Queries thal in
‘multiple attributes from 4 relation, however, must spend

each record. To mi

B author was at

Permissia s copy withous ee all e part of s materia is geanted pro-
vided that she coptes are ot macde o smibuted fo diret canmereiol
atvatage, the VEDI copyright norce.and he i f the pulicaron and
lts daie appeac and nice Ls iven thar copsing i by perission of the
Vory Lrge D Bate Endosment. To oy otberets. ot repubish,
gl fee andion speclal perision romthe Exdonment
Proceedings of the 27th VLD Confervace,

T

Mark D. Marios Skounakis
Iniv, of Wisconsin-Madison — Univ. of Wisconsin-Madison
narkhill Ges.wise.edie marios@cs.wisc.

tremendous additional time to join the participating sub-
relations together. Except for Sybasc-1Q [33]. today’s rela-
tional DBMSs use NSM for general-purpose data place-
‘ment (20]129](32]
ecent research has demonstrated that modern d
base workloads, such as decision support systems and spa
tial applications, are often bound by delays related ta the
rocessor and the memory subsystem rather than 10
12011511261, When running commereial database systems
on a modem processor, data requests that miss in the cache
archy (ic.. soquests for daa that are not found in any
of the caches and arc wansferred from main Yarca
key memory bottlencek [1]. In addition, oaly a fraction of
the data transfrred to the cache is useful 1o the query: the
item that the query processing alzorithm requests and the
transfer unit between the memory and the processor arc
typically not the same size. Loading the cache with useless
data (a) wasies bandwidih, (b) pollutes the cache. and (c)
possibly forces seplacement of information that may be
needed in the future, incurring even more delays, The
challenge is 10 repaie NSM's cache bebavior without conie
promising its advantages over DSM
This paper imwoduces and evaluaies Partition
Attributes Across (PAX). a niew layout for data records
that combines the best of the two worlds and exhibiss per-
formance superior to both plasement schemes by climinal-

Within cach page. however, PAX groups all the values of a
panicular atiribuie together v a minipage. During a

licate on a fraction of
the record), PAX fully ulﬂuc\ the cache resources,
becauss on e i & nubSr of 4 singe aNbUIES val-
wes are loaded into the cache together, At the same
all parts of the record are on the same page. To reconstnu
a recond one needs 10 perform a mini-join among
ipages. which incurs minimal cost because it docs not

have to look beyond the

We cvaluated PAX against NSM and DSM using (s}
predicate sclection queries on numerie data and (b) 4 vari-
1 of quorcs on TPC-H dascts a0 top of the Shor sor-

berween the projected anribute and the aribute in the
predicate, and degree of the relation. The experimental
s show that, when compared 1o NSYL PAX (a) incurs
50-75% fewer sccond-lovel cache misses duc to data

https://parquet.apache.org/
https://orc.apache.org/
https://arrow.apache.org/
https://dl.acm.org/doi/10.5555/645927.672367

PAX: Physical Organization

Horizontally partition Parquet: data organization

groups. Then vertical

attributes into colum

Global meta-data dir

offsets to the file's r¢
— This is stored in the f¢
immutable (Parquet,

Each row group con

« Data organization

° Row-groups (default 128MB)
o Column chunks

Lal e

meta-data header about its contents.

DEPARTMENT OF
COMPUTER SCIENCE

o Pages (default 1MB) — = -
m Metadata RC 0 — j =
e Min T
e Max L l chuk 0 j
e Count o] __m_lmm
m Rep/deflevels S
®m Encoded values L . o) = —
lﬂumy N : j [ﬂ' j
E""- fow group and column mm m =
@databricks ! —
'S
c3 c4 c5 18

| File Meta-Data

https://youtu.be/1j8SdS7s_NY?t=705

Observation

1/0O is the main bottleneck if the DBMS fetches
data from disk during query execution.

The DBMS can compress pages to increase the
utility of the data moved per 1/O operation.

Key trade-off is speed vs. compression ratio
— Compressing the database reduces DRAM requirements.
— |t may decrease CPU costs during query execution.

Database Compression

Goal #1: Must produce fixed-length values.
— Only exception is var-length data stored in separate
pool.

Goal #2: Postpone decompression for as long as

possible during query execution.
— Also known as late materialization.

Goal #3: Must be a lossless scheme.

— People (typically) don't like losing data.

— Any lossy compression must be performed by
application.

Compression Granularity

Choice #1: Block-level
— Compress a block of tuples for the same table.

Choice #2: Tuple-level

— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level
— Compress multiple values for one or more attributes
stored for multiple tuples (DSM-only).

Naive Compression

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data

provided as input.
— LZ0 (1996), LZ4 (2011), Snappy (2011),
Oracle OZIP (2014), Zstd (2015)

Considerations
— Computational overhead
— Compress vs. decompress speed.

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

MySQL InnoDB Compression

B Buffer Pool

s, nod log | -

Compressed Page,

‘ mod log

U d C d P
Read * ncol:r,ngggesse 16 KB ompressed Page;

CENCT | [1,2,4,5]
KB

Compressed- Page, }

mod log

i

Compressed Page,

= UN)
[I:]1 C Source: MySQL 5.7 Documentation
DEPARTMENT OF
COMPUTER SCIENCE

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

Naive Compression

The DBMS must decompress data first before it

can be read and (potentially) modified.
— This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

Observation

|deally, we want the DBMS to operate on
compressed data without decompressing it first.

SELECT * FROM users
WHERE name = 'Andy'

NAME SALARY
Andy 99999
Jignesh 88888

COMPUTER SCIENCE

Database Magic!

»iTw

ll-l

SELECT * FROM users
WHERE name = XX

NAME SALARY
XX AA

YY BB

Compression Granularity

Choice #1: Block-level
— Compress a block of tuples for the same table.

Choice #2: Tuple-level

— Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level

— Compress a single attribute within one tuple (overflow).
— Can target multiple attributes for the same tuple.

Choice #4: Column-level
— Compress multiple values for one or more attributes
stored for multiple tuples (DSM-only).

Columnar Compression

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding
Incremental Encoding

Dictionary Encoding

=)

DEPARTMENT OF
COMPUTER SCIENCE

Run-length Encoding (RLE)

Compress runs of the same value in a single

column into triplets:
— The value of the attribute.

— The start position in the column segment.
— The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

COMPUTER SCIENCE

Run-length Encoding

Svigeckl) Btxt o Compressed Data
isDead i isDead
1 Y
— B 2 (N,7,2)
SELECT isDead, COUNT(*) : a1
FROM users 4,
GROUP BY isDead 6 (N,5,1)
5 l 8 (Y,6,2)
& . 9 | RLE Triplet
4 4 - Value
7 N 7 - Offset
- Length

COMPUTER SCIENCE

Bit Packing

If the values for an integer attribute
are smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

Original Data Original:
8 x 32-bits =
256 bits

13 | coccccce coocccce ooooooed cece1ien
191 > 00000000 00000000 a000000d 10117111
56 — 00111000
92 — 01011100
81 e 01010001
120 |- 01111000
231 e 00000000 00000000 0000000 11100111
172 | 00000000 00000000 0000000d 10101100

Compressed:

8 x 8-bits =

64 bits

Patching / Mostly Encoding

A variation of bit packing for when an attribute's
values are "mostly" less than the largest size,

store them with smaller data type.

— The remaining values that cannot be compressed are
stored in their raw form.

Original Data Compressed Data
.. offset Iz
Orlgmal:. 13 13 3 99999999 Compressed:
8 X 32-bits = 191 181 (8 % 8-bits) +
256 bits S 22 16-bits + 32-bits
81 81 = 112 bits
120 120
_ _ 231 231
Source: Redshift Documentation 172 172

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

Bitmap Encoding

Store a separate bitmap for each unique value for
an attribute where an offset in the vector

corresponds to a tuple.

— The it position in the Bitmap corresponds to the it tuple
in the table.

— Typically segmented into chunks to avoid allocating large
blocks of contiguous memory.

Only practical if the value cardinality is low.
Some DBMSs provide bitmap indexes.

https://dbdb.io/browse?indexes=bitmap

Bitmap Encoding

Compressed:
16 bits + 16 bits = 32 bits
Original Data Compressed Data
ispead A 2 x 8-bits =
Ly B~ /6 bits
9 1 1 %)
; » 2 |[1]] o
4 Original: B | I .
5 } 8 x 8-bits = 64 bits 4 ol 1| \ 8x 2-bits =
= 11 e 16 bits
6
7 6 91 1
8 7 1 %)
8 1 0 j

COMPUTER SCIENCE

Bitmap Encoding: Example

Assume we have 10 million tuples.

43,000 zip codes in the US.
— 10000000 x 32-bits =40 MB
— 10000000 x 43000 =53.75 GB

Every time the application inserts a
new tuple, the DBMS must extend
43,000 different bitmaps.

There are compressed data structures

for sparse data sets:
— Roaring Bitmaps

CREATE TABLE customer (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),

|zig_code INT |
);

I Clickkouse () influxds @ pinot sLUEENE

N Weaviate % <"Z @ ilosa
NG é‘VE‘SIDCJLKL P

= ™

https://roaringbitmap.org/
https://roaringbitmap.org/

i

DEPARTMENT OF
COMPUTER SCIENCE

Delta Encoding

Recording the difference between values that
follow each other in the same column.

— Store base value in-line or in a separate look-up table.

— Combine with RLE to get even better compression ratios.
Frame-of-Reference Variant: Use global min value.

Original Data
eo4 SMmp
12:00 99.5
12:01 99.4
12:02 99.5
12:03 99.6
12:04 99.4
5 x 64-bits
= 320 bits

»

+1

Compressed Data

12:00

99.5

-0.1

+1

+0.1

+1

+0.1

+]

-0.2

64-bits + (4 x 16-bits)
— 128 bits

»

Compressed Data

12:00 99.5
(+1.,4) -0.1
+0. 1
+0.1
-0.2

64-bits + (2 x 16-bits)
= 96 bits

Dictionary Compression

Replace frequent values with smaller fixed-length
codes and then maintain a mapping (dictionary)

from the codes to the original values
— Typically, one code per attribute value.
— Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding

and decoding for both point and range queries.

— Encode/Locate: For a given uncompressed value, convert
it into its compressed form.

— Decode/Extract: For a given compressed value, convert it

back into its original form.

Dictionary: Order-preserving

The encoded values need to support the same
collation as the original values.

SELECT * FROM users SELECT * FROM users
WHERE name LIKE 'And%' WHERE name BETWEEN 10 AND 20
Original Data Compressed Data
_name value code AYllS
Andrea 10 Andrea 10 5: 85
Mr.Pickles » 40 Andy 20 > B.ﬁ
Andy 20 Jignesh | 3@ S
Jignesh 30 Mr.Pickles | 40 j 2 Q
Mr.Pickles 40 <

Order-preserving Encoding

SELECT name FROM users

Still must perform scan on
WHERE name LIKE 'And%'

column

SELECT DISTINCT name

FROM users » Only need to access dictionary
WHERE name LIKE 'And%'

Original Data Compressed Data
_name | value code AN
Andrea 10 Andrea 10 Qp g’
Mr.Pickles » 40 Andy 20 > 3';_
Andy 20 Jignesh 30 S M
Jignesh 30 Mr.Pickles | 40 | 3 Q
Mr.Pickles 40 <

COMPUTER SCIENCE

Conclusion

It is important to choose the right storage model

for the target workload:
— OLTP = Row Store
— OLAP = Column Store

DBMSs can combine different approaches for
even better compression.

Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.

COMPUTER SCIENCE

Next Class

SELECT * FROM useracct
WHERE userName = ?

AND userPass = ?

Index

INSERT INTO useracct
VALUES (?,7,..7)

NSM Disk Page

header | userID JuserNamefuserPass|hostname| lastlLogin |

header | userID JuserNamefuserPass|hostname| lastlLogin

header | userID JuserNamefuserPassfhostname| lastlLogin

header | userID JuserNamefuserPass|hostname| lastlLogin

Disk
fl| UNC

DEPARTMENT OF
COMPUTER SCIENCE

Database File

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Storage so far
	Slide 4: Today's Agenda

	Workloads
	Slide 5: Database Workloads
	Slide 6: Database Workloads
	Slide 7: Wikipedia Example
	Slide 8: Observation
	Slide 9: OLTP
	Slide 10: OLAP

	Storage Models
	Slide 11: Storage Models

	NSM
	Slide 12: N-ary Storage Model (NSM)
	Slide 13: NSM: Physical Organization
	Slide 14: NSM: OLTP Example
	Slide 15: NSM: OLAP Example
	Slide 16: NSM: SUMMARY

	DSM
	Slide 17: Decomposition Storage Model (DSM)
	Slide 18: DSM: Physical Organization
	Slide 19: DSM: OLAP Example
	Slide 20: DSM: Tuple Identification
	Slide 21: DSM: Variable-length Data
	Slide 22: Decomposition Storage Model (DSM)

	PAX
	Slide 23: Observation
	Slide 24: PAX Storage Model
	Slide 25: PAX: Physical Organization

	Compression
	Slide 26: Observation
	Slide 27: Database Compression
	Slide 28: Compression Granularity

	Naive Compression
	Slide 29: Naïve Compression
	Slide 30: MySQL InnoDB Compression
	Slide 31: Naïve Compression
	Slide 32: Observation

	Columnar Compression
	Slide 33: Compression Granularity
	Slide 34: Columnar Compression

	RLE
	Slide 35: Run-length Encoding (RLE)
	Slide 36: Run-length Encoding

	Bit Packing
	Slide 37: Bit Packing
	Slide 38: Patching / Mostly Encoding

	BitMap Encoding
	Slide 39: Bitmap Encoding
	Slide 40: Bitmap Encoding
	Slide 41: Bitmap Encoding: Example

	Delta Encoding
	Slide 42: Delta Encoding

	Dictionary Encoding
	Slide 43: Dictionary Compression
	Slide 44: Dictionary: Order-preserving
	Slide 45: Order-preserving Encoding

	Conclusion
	Slide 47: Conclusion
	Slide 48: Next Class

