
COMP 421: Files & Databases

Lecture 6: Column Stores and Compression

1

Announcements

Project 1 is due 9/29

If you have not started, you are now behind

2

Storage so far

We discussed storage architecture alternatives to
tuple-oriented scheme.
→ Buffer pool for memory mgmt
→ Heap file with slotted pages
→ Log-structured storage

These approaches are ideal for write-heavy
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads
may be read (SELECT) performance…

3

Today's Agenda

Database Workloads

Storage Models

Data Compression

4

Database Workloads

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of

data each time.

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute

aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance

5

OLTP

OLAP

Database Workloads

Write-Heavy Read-Heavy

Simple

Complex

Workload Focus

O
p

er
a

ti
o

n
 C

o
m

p
le

xi
ty

Source: Mike Stonebraker

Jim Gray

Jim Gray

6

HTAP

http://cacm.acm.org/magazines/2011/6/108651
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://www.nap.edu/read/12473/chapter/15#82

Wikipedia Example

CREATE TABLE revisions (
 revID INT PRIMARY KEY,
 userID INT REFERENCES useracct (userID),
 pageID INT REFERENCES pages (pageID),
 content TEXT,
 updated DATETIME
);

CREATE TABLE pages (
 pageID INT PRIMARY KEY,
 title VARCHAR UNIQUE,
 latest INT
 ⮱REFERENCES revisions (revID),
);

CREATE TABLE useracct (
 userID INT PRIMARY KEY,
 userName VARCHAR UNIQUE,
 ⋮
);

7

Observation

The relational model does not specify that the
DBMS must store all a tuple's attributes together
in a single page.

This may not actually be the best layout for some
workloads…

8

OLTP

On-line Transaction Processing:
→ Simple queries that read/update a small

amount of data that is related to a single
entity in the database.

This is usually the kind of application
that people build first. UPDATE useracct

 SET lastLogin = NOW(),
 hostname = ?
 WHERE userID = ?

INSERT INTO revisions
 VALUES (?,?…,?)

SELECT P.*, R.*
 FROM pages AS P
 INNER JOIN revisions AS R
 ON P.latest = R.revID
 WHERE P.pageID = ?

9

OLAP

On-line Analytical Processing:
→ Complex queries that read large portions

of the database spanning multiple
entities.

You execute these workloads on the
data you have collected from your
OLTP application(s).

10

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM
 U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY
 EXTRACT(month FROM U.lastLogin)

Storage Models

A DBMS's storage model specifies how it
physically organizes tuples on disk and in memory.
→ Can have different performance characteristics based on

the target workload (OLTP vs. OLAP).
→ Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)

11

N-ary Storage Model (NSM)

The DBMS stores (almost) all attributes for a
single tuple contiguously in a single page.
→ Also commonly known as a row store

Ideal for OLTP workloads where queries are more
likely to access individual entities and execute
write-heavy workloads.

NSM database page sizes are typically some
constant multiple of 4 KB hardware pages.
→ See Lecture #03

12

https://15445.courses.cs.cmu.edu/fall2024/schedule.html#sep-04-2024
https://15445.courses.cs.cmu.edu/fall2024/schedule.html#sep-04-2024

D
a

ta
b

a
se

 P
a

g
e

NSM: Physical Organization

A disk-oriented NSM system stores a
tuple's fixed-length and variable-
length attributes contiguously in a
single slotted page.

The tuple's record id (page#, slot#) is
how the DBMS uniquely identifies a
physical tuple.

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header

b0a0 c0headerb1 c1
a1header

Slot Array

b2a2 c2header
b3a3 c3headerb4 c4

a4headerb5a5 c5header

13

Disk D
a

ta
b

a
se

 F
ile

NSM: OLTP Example

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

Index
INSERT INTO useracct
 VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header userID userName userPass lastLoginhostnameheader

Next class!

14

Disk D
a

ta
b

a
se

 F
ile

NSM: OLAP Example

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

15

Useless Data!

NSM: SUMMARY

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple (OLTP).
→ Can use index-oriented physical storage for clustering.

Disadvantages
→ Not good for scanning large portions of the table and/or

a subset of the attributes.
→ Terrible memory locality in access patterns.
→ Not ideal for compression because of multiple value

domains within a single page.

16

Decomposition Storage Model (DSM)

Store a single attribute for all tuples
contiguously in a block of data.
→ Also known as a "column store"

Ideal for OLAP workloads where read-
only queries perform large scans over
a subset of the table’s attributes.

DBMS is responsible for
combining/splitting a tuple's
attributes when reading/writing.

17

https://doi.org/10.1145/971699.318923

DSM: Physical Organization

Store attributes and meta-data (e.g.,
nulls) in separate arrays of fixed-length
values.
→ Most systems identify unique physical

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain separate pages per attribute
with a dedicated header area for meta-
data about entire column.

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

header null bitmap
a0 a1 a2 a3 a4 a5

Pa
ge

 #
1

header null bitmap
b0 b1 b2 b3 b4 b5

P
a

g
e

 #
2

header null bitmap

c5
c0 c1 c2 c3 c4

P
a

g
e

 #
3

18

DSM Disk Page

header

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

hostname

Disk D
a

ta
b

a
se

 F
ile

DSM: OLAP Example

SELECT COUNT(U.lastLogin),
 EXTRACT(month FROM U.lastLogin) AS month
 FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)

19

DSM Disk Page

header

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

lastLogin

userID

userName

userPass

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

lastLogin

DSM: Tuple Identification

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

Offsets

0
1
2
3

A B C D

Embedded Ids

A

0
1
2
3

B

0
1
2
3

C

0
1
2
3

D

0
1
2
3

20

Don't
Do This!

DSM: Variable-length Data

Padding variable-length fields to ensure they are
fixed-length is wasteful, especially for large
attributes.

A better approach is to use dictionary
compression to convert repetitive variable-length
data into fixed-length values (typically 32-bit
integers).
→ More on this later in this lecture…

21

Decomposition Storage Model (DSM)

Advantages
→ Reduces the amount wasted I/O per query because the

DBMS only reads the data that it needs.
→ Faster query processing because of increased locality

and cached data reuse (Lecture #13).
→ Better data compression.

Disadvantages
→ Slow for point queries, inserts, updates, and deletes

because of tuple splitting/stitching/reorganization.

22

https://15445.courses.cs.cmu.edu/fall2024/schedule.html#oct-21-2024

Observation

OLAP queries almost never access a single column
in a table by itself.
→ At some point during query execution, the DBMS must

get other columns and stitch the original tuple back
together.

But we still need to store data in a columnar
format to get the storage + execution benefits.

We need columnar scheme that still stores
attributes separately but keeps the data for each
tuple physically close to each other…

23

PAX Storage Model

Partition Attributes Across (PAX) is a
hybrid storage model that vertically
partitions attributes within a
database page.
→ Examples: Parquet, ORC, and Arrow.

The goal is to get the benefit of
faster processing on columnar
storage while retaining the spatial
locality benefits of row storage.

24

A close-up of a paper

Description automatically generated

https://parquet.apache.org/
https://orc.apache.org/
https://arrow.apache.org/
https://dl.acm.org/doi/10.5555/645927.672367

PAX: Physical Organization

Horizontally partition data into row
groups. Then vertically partition their
attributes into column chunks.

Global meta-data directory contains
offsets to the file's row groups.
→ This is stored in the footer if the file is

immutable (Parquet, Orc).

Each row group contains its own
meta-data header about its contents.

25

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

File Meta-Data

PA
X

 F
ile

a0 a1 a2 b0 b1 b2

c0 c1 c2

Row Group Meta-Data

R
o

w
 G

ro
u

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

Row Group Meta-Data

R
o

w
 G

ro
u

p

Column
Chunk

https://youtu.be/1j8SdS7s_NY?t=705

Observation

I/O is the main bottleneck if the DBMS fetches
data from disk during query execution.

The DBMS can compress pages to increase the
utility of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
→ Compressing the database reduces DRAM requirements.
→ It may decrease CPU costs during query execution.

26

Database Compression

Goal #1: Must produce fixed-length values.
→ Only exception is var-length data stored in separate

pool.

Goal #2: Postpone decompression for as long as
possible during query execution.
→ Also known as late materialization.

Goal #3: Must be a lossless scheme.
→ People (typically) don't like losing data.
→ Any lossy compression must be performed by

application.

27

Compression Granularity

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

28

Naïve Compression

Compress data using a general-purpose algorithm.
Scope of compression is only based on the data
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.

29

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Oberhumer
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/Snappy_(software)
https://patents.google.com/patent/US9697221B2/en
https://en.wikipedia.org/wiki/Zstandard

MySQL InnoDB Compression

16 KB

Source: MySQL 5.7 Documentation

Uncompressed
Page0

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Write

30

Database FileBuffer Pool

[1,2,4,8]
KB

Read

Read

https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html

Naïve Compression

The DBMS must decompress data first before it
can be read and (potentially) modified.
→ This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level
meaning or semantics of the data.

31

Observation

Ideally, we want the DBMS to operate on
compressed data without decompressing it first.

SELECT * FROM users
 WHERE name = 'Andy'

SELECT * FROM users
 WHERE name = XX

NAME SALARY

Andy 99999

Jignesh 88888

NAME SALARY

XX AA
YY BB

Database Magic!

32

Compression Granularity

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes

stored for multiple tuples (DSM-only).

33

Columnar Compression

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding

Incremental Encoding

Dictionary Encoding

34

Run-length Encoding (RLE)

Compress runs of the same value in a single
column into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to
maximize compression opportunities.

35

Run-length Encoding

Compressed Data

id

2

1

4

3

7

6

9

8

isDead

(N,3,1)

(Y,0,3)

(N,5,1)

(Y,4,1)

(Y,6,2)

Original Data

id

2

1

4

3

7

6

9

8

isDead

Y

Y

N

Y

N

Y

Y

Y

Sorted Data

id

2

1

6

3

9

8

7

4

isDead

Y

Y

Y

Y

Y

Y

N

N

id

2

1

6

3

9

8

7

4

isDead

(N,7,2)

(Y,0,6)

RLE Triplet
 - Value
 - Offset
 - Length

SELECT isDead, COUNT(*)
 FROM users
 GROUP BY isDead

36

Bit Packing

If the values for an integer attribute
are smaller than the range of its given
data type size, then reduce the
number of bits to represent each
value.

Use bit-shifting tricks to operate on
multiple values in a single word.

37

Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

Original:
8 × 32-bits =
256 bits

Compressed:
8 × 8-bits =
64 bits

10111111

00001101

01011100

00111000

01111000

01010001

10101100

11100111

Patching / Mostly Encoding

A variation of bit packing for when an attribute's
values are "mostly" less than the largest size,
store them with smaller data type.
→ The remaining values that cannot be compressed are

stored in their raw form.

38

Source: Redshift Documentation

Original Data Compressed Data
offset

3

value

99999999Original:
8 × 32-bits =
256 bits

Compressed:
(8 × 8-bits) +
16-bits + 32-bits
= 112 bits

int32

191
13

92
99999999

81
120
231
172

mostly8

181
13

XXX
92
81
120
231
172

http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html

Bitmap Encoding

Store a separate bitmap for each unique value for
an attribute where an offset in the vector
corresponds to a tuple.
→ The ith position in the Bitmap corresponds to the ith tuple

in the table.
→ Typically segmented into chunks to avoid allocating large

blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.

39

https://dbdb.io/browse?indexes=bitmap

Original Data

Bitmap Encoding
40

Compressed Data

id

2

1

4

3

6

5

8

7

isDead

Y

Y

N

Y

N

Y

Y

Y

id

2

1

4

3

6

5

8

7

Y

1

1

0

1

0

1

1

1

N

0

0

1

0

1

0

0

0

isDead

Original:
8 × 8-bits = 64 bits 8 × 2-bits =

16 bits

2 × 8-bits =
16 bits

Compressed:
16 bits + 16 bits = 32 bits

Bitmap Encoding: Example

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time the application inserts a
new tuple, the DBMS must extend
43,000 different bitmaps.

There are compressed data structures
for sparse data sets:
→ Roaring Bitmaps

41

CREATE TABLE customer (
 id INT PRIMARY KEY,
 name VARCHAR(32),
 email VARCHAR(64),
 address VARCHAR(64),
 zip_code INT
);

https://roaringbitmap.org/
https://roaringbitmap.org/

Delta Encoding

Recording the difference between values that
follow each other in the same column.
→ Store base value in-line or in a separate look-up table.
→ Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data
time64

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

64-bits + (4 × 16-bits)
= 128 bits

5 × 64-bits
= 320 bits

64-bits + (2 × 16-bits)
= 96 bits

42

Dictionary Compression

Replace frequent values with smaller fixed-length
codes and then maintain a mapping (dictionary)
from the codes to the original values
→ Typically, one code per attribute value.
→ Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding
and decoding for both point and range queries.
→ Encode/Locate: For a given uncompressed value, convert

it into its compressed form.
→ Decode/Extract: For a given compressed value, convert it

back into its original form.

43

Dictionary: Order-preserving

The encoded values need to support the same
collation as the original values.

SELECT * FROM users
 WHERE name LIKE 'And%'

Original Data Compressed Data

SELECT * FROM users
 WHERE name BETWEEN 10 AND 20

name

Andrea

Mr.Pickles

Andy

Jignesh

Mr.Pickles

code
10

20

30

40

value
Andrea

Andy

Jignesh

Mr.Pickles

name
10

40

20

30

40

So
rted

D

ictio
n

a
ry

44

Order-preserving Encoding

SELECT name FROM users
 WHERE name LIKE 'And%'

SELECT DISTINCT name
 FROM users
 WHERE name LIKE 'And%'

Still must perform scan on
column

Only need to access dictionary

Original Data Compressed Data

name

Andrea

Mr.Pickles

Andy

Jignesh

Mr.Pickles

code
10

20

30

40

value
Andrea

Andy

Jignesh

Mr.Pickles

name
10

40

20

30

40

So
rted

D

ictio
n

a
ry

45

Conclusion

It is important to choose the right storage model
for the target workload:
→ OLTP = Row Store
→ OLAP = Column Store

DBMSs can combine different approaches for
even better compression.

Dictionary encoding is probably the most useful
scheme because it does not require pre-sorting.

47

Next Class
48

Disk D
a

ta
b

a
se

 F
ile

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

Index
INSERT INTO useracct
 VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header userID userName userPass lastLoginhostnameheader

Next class!

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Storage so far
	Slide 4: Today's Agenda

	Workloads
	Slide 5: Database Workloads
	Slide 6: Database Workloads
	Slide 7: Wikipedia Example
	Slide 8: Observation
	Slide 9: OLTP
	Slide 10: OLAP

	Storage Models
	Slide 11: Storage Models

	NSM
	Slide 12: N-ary Storage Model (NSM)
	Slide 13: NSM: Physical Organization
	Slide 14: NSM: OLTP Example
	Slide 15: NSM: OLAP Example
	Slide 16: NSM: SUMMARY

	DSM
	Slide 17: Decomposition Storage Model (DSM)
	Slide 18: DSM: Physical Organization
	Slide 19: DSM: OLAP Example
	Slide 20: DSM: Tuple Identification
	Slide 21: DSM: Variable-length Data
	Slide 22: Decomposition Storage Model (DSM)

	PAX
	Slide 23: Observation
	Slide 24: PAX Storage Model
	Slide 25: PAX: Physical Organization

	Compression
	Slide 26: Observation
	Slide 27: Database Compression
	Slide 28: Compression Granularity

	Naive Compression
	Slide 29: Naïve Compression
	Slide 30: MySQL InnoDB Compression
	Slide 31: Naïve Compression
	Slide 32: Observation

	Columnar Compression
	Slide 33: Compression Granularity
	Slide 34: Columnar Compression

	RLE
	Slide 35: Run-length Encoding (RLE)
	Slide 36: Run-length Encoding

	Bit Packing
	Slide 37: Bit Packing
	Slide 38: Patching / Mostly Encoding

	BitMap Encoding
	Slide 39: Bitmap Encoding
	Slide 40: Bitmap Encoding
	Slide 41: Bitmap Encoding: Example

	Delta Encoding
	Slide 42: Delta Encoding

	Dictionary Encoding
	Slide 43: Dictionary Compression
	Slide 44: Dictionary: Order-preserving
	Slide 45: Order-preserving Encoding

	Conclusion
	Slide 47: Conclusion
	Slide 48: Next Class

