
COMP 421: Files & Databases

Lecture 6: Column Stores and Compression
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Announcements

Project 1 is due 9/29

If you have not started, you are now behind
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Storage so far

We discussed storage architecture alternatives to 
tuple-oriented scheme.
→ Buffer pool for memory mgmt
→ Heap file with slotted pages
→ Log-structured storage

These approaches are ideal for write-heavy 
(INSERT/UPDATE/DELETE) workloads.

But the most important query for some workloads 
may be read (SELECT ) performance…
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Today's Agenda

Database Workloads

Storage Models

Data Compression
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Database Workloads

On-Line Transaction Processing (OLTP)
→ Fast operations that only read/update a small amount of 

data each time. 

On-Line Analytical Processing (OLAP)
→ Complex queries that read a lot of data to compute 

aggregates.

Hybrid Transaction + Analytical Processing
→ OLTP + OLAP together on the same database instance
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OLTP

OLAP

Database Workloads

Write-Heavy Read-Heavy
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Source: Mike Stonebraker

Jim Gray

Jim Gray
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http://cacm.acm.org/magazines/2011/6/108651
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://www.nap.edu/read/12473/chapter/15#82


Wikipedia Example

CREATE TABLE revisions (
  revID INT PRIMARY KEY,
  userID INT REFERENCES useracct (userID),  
  pageID INT REFERENCES pages (pageID),
  content TEXT,
  updated DATETIME
);

CREATE TABLE pages (
  pageID INT PRIMARY KEY,
  title VARCHAR UNIQUE,
  latest INT
  ⮱REFERENCES revisions (revID),
);

CREATE TABLE useracct (
  userID INT PRIMARY KEY,
  userName VARCHAR UNIQUE,
  ⋮
);

7



Observation

The relational model does not specify that the 
DBMS must store all a tuple's attributes together 
in a single page.

This may not actually be the best layout for some 
workloads…

8



OLTP

On-line Transaction Processing:
→ Simple queries that read/update a small 

amount of data that is related to a single 
entity in the database.

This is usually the kind of application 
that people build first. UPDATE useracct

   SET lastLogin = NOW(),
       hostname = ?
 WHERE userID = ?

INSERT INTO revisions
 VALUES (?,?…,?)

SELECT P.*, R.* 
  FROM pages AS P
 INNER JOIN revisions AS R
    ON P.latest = R.revID
 WHERE P.pageID = ?
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OLAP

On-line Analytical Processing:
→ Complex queries that read large portions 

of the database spanning multiple 
entities.

You execute these workloads on the 
data you have collected from your 
OLTP application(s).
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SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM 
            U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY
  EXTRACT(month FROM U.lastLogin)



Storage Models

A DBMS's storage model specifies how it 
physically organizes tuples on disk and in memory.
→ Can have different performance characteristics based on 

the target workload (OLTP vs. OLAP).
→ Influences the design choices of the rest of the DBMS.

Choice #1: N-ary Storage Model (NSM)

Choice #2: Decomposition Storage Model (DSM)

Choice #3: Hybrid Storage Model (PAX)

11



N-ary Storage Model (NSM)

The DBMS stores (almost) all attributes for a 
single tuple contiguously in a single page.
→ Also commonly known as a row store

Ideal for OLTP workloads where queries are more 
likely to access individual entities and execute 
write-heavy workloads.

NSM database page sizes are typically some 
constant multiple of 4 KB hardware pages.
→ See Lecture #03
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https://15445.courses.cs.cmu.edu/fall2024/schedule.html#sep-04-2024
https://15445.courses.cs.cmu.edu/fall2024/schedule.html#sep-04-2024
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NSM: Physical Organization

A disk-oriented NSM system stores a 
tuple's fixed-length and variable-
length attributes contiguously in a 
single slotted page.

The tuple's record id (page#, slot#) is 
how the DBMS uniquely identifies a 
physical tuple.
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NSM: OLTP Example

SELECT * FROM useracct
 WHERE userName = ?
   AND userPass = ?

Index
INSERT INTO useracct
 VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header userID userName userPass lastLoginhostnameheader

Next class!
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NSM: OLAP Example

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

header

header

header

header

SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
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Useless Data!



NSM: SUMMARY

Advantages
→ Fast inserts, updates, and deletes.
→ Good for queries that need the entire tuple (OLTP).
→ Can use index-oriented physical storage for clustering.

Disadvantages
→ Not good for scanning large portions of the table and/or 

a subset of the attributes.
→ Terrible memory locality in access patterns.
→ Not ideal for compression because of multiple value 

domains within a single page.
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Decomposition Storage Model (DSM)

Store a single attribute for all tuples 
contiguously in a block of data.
→ Also known as a "column store"

Ideal for OLAP workloads where read-
only queries perform large scans over 
a subset of the table’s attributes.

DBMS is responsible for 
combining/splitting a tuple's 
attributes when reading/writing.
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DSM: Physical Organization

Store attributes and meta-data (e.g., 
nulls) in separate arrays of fixed-length 
values.
→ Most systems identify unique physical 

tuples using offsets into these arrays.
→ Need to handle variable-length values…

Maintain separate pages per attribute 
with a dedicated header area for meta-
data about entire column.
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DSM Disk Page
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DSM: OLAP Example

SELECT COUNT(U.lastLogin),
       EXTRACT(month FROM U.lastLogin) AS month
  FROM useracct AS U
 WHERE U.hostname LIKE '%.gov'
 GROUP BY EXTRACT(month FROM U.lastLogin)
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DSM: Tuple Identification

Choice #1: Fixed-length Offsets
→ Each value is the same length for an attribute.

Choice #2: Embedded Tuple Ids
→ Each value is stored with its tuple id in a column.

Offsets
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DSM: Variable-length Data

Padding variable-length fields to ensure they are 
fixed-length is wasteful, especially for large 
attributes.

A better approach is to use dictionary 
compression to convert repetitive variable-length 
data into fixed-length values (typically 32-bit 
integers).
→ More on this later in this lecture…

21



Decomposition Storage Model (DSM)

Advantages
→ Reduces the amount wasted I/O per query because the 

DBMS only reads the data that it needs.
→ Faster query processing because of increased locality 

and cached data reuse (Lecture #13).
→ Better data compression.

Disadvantages
→ Slow for point queries, inserts, updates, and deletes 

because of tuple splitting/stitching/reorganization.
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https://15445.courses.cs.cmu.edu/fall2024/schedule.html#oct-21-2024


Observation

OLAP queries almost never access a single column 
in a table by itself.
→ At some point during query execution, the DBMS must 

get other columns and stitch the original tuple back 
together.

But we still need to store data in a columnar 
format to get the storage + execution benefits.

We need columnar scheme that still stores 
attributes separately but keeps the data for each 
tuple physically close to each other…
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PAX Storage Model

Partition Attributes Across (PAX) is a 
hybrid storage model that vertically 
partitions attributes within a 
database page.
→ Examples: Parquet, ORC, and Arrow.

The goal is to get the benefit of 
faster processing on columnar 
storage while retaining the spatial 
locality benefits of row storage.
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A close-up of a paper

Description automatically generated

https://parquet.apache.org/
https://orc.apache.org/
https://arrow.apache.org/
https://dl.acm.org/doi/10.5555/645927.672367


PAX: Physical Organization

Horizontally partition data into row 
groups. Then vertically partition their 
attributes into column chunks.

Global meta-data directory contains 
offsets to the file's row groups.
→ This is stored in the footer if the file is 

immutable (Parquet, Orc).

Each row group contains its own 
meta-data header about its contents.

25

b0

b1

b2

b3

b4

b5

a0

a1

a2

a3

a4

a5

c0

c1

c2

c3

c4

c5

Row #0

Row #1

Row #2

Row #3

Row #4

Row #5

Col A Col B Col C

File Meta-Data

PA
X

 F
ile

a0 a1 a2 b0 b1 b2

c0 c1 c2

Row Group Meta-Data

R
o

w
 G

ro
u

p

a3 a4 a5 b3 b4 b5

c3 c4 c5

Row Group Meta-Data

R
o

w
 G

ro
u

p

Column
Chunk
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Observation

I/O is the main bottleneck if the DBMS fetches 
data from disk during query execution.

The DBMS can compress pages to increase the 
utility of the data moved per I/O operation.

Key trade-off is speed vs. compression ratio
→ Compressing the database reduces DRAM requirements.
→ It may decrease CPU costs during query execution.
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Database Compression

Goal #1: Must produce fixed-length values.
→ Only exception is var-length data stored in separate 

pool.

Goal #2: Postpone decompression for as long as 
possible during query execution.
→ Also known as late materialization.

Goal #3: Must be a lossless scheme.
→ People (typically) don't like losing data.
→ Any lossy compression must be performed by 

application.
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Compression Granularity

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level 
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes 

stored for multiple tuples (DSM-only).
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Naïve Compression

Compress data using a general-purpose algorithm. 
Scope of compression is only based on the data 
provided as input.
→ LZO (1996), LZ4 (2011), Snappy (2011),

Oracle OZIP (2014), Zstd (2015)

Considerations
→ Computational overhead
→ Compress vs. decompress speed.
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MySQL InnoDB Compression

16 KB

Source: MySQL 5.7 Documentation

Uncompressed
Page0

Compressed Page0

mod log

Compressed Page0

mod log

Compressed Page1

mod log

Compressed Page2

mod log

Write
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Database FileBuffer Pool

[1,2,4,8] 
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Read
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https://dev.mysql.com/doc/refman/5.7/en/innodb-compression-internals.html


Naïve Compression

The DBMS must decompress data first before it 
can be read and (potentially) modified.
→ This limits the "scope" of the compression scheme.

These schemes also do not consider the high-level 
meaning or semantics of the data.
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Observation

Ideally, we want the DBMS to operate on 
compressed data without decompressing it first.

SELECT * FROM users
 WHERE name = 'Andy'

SELECT * FROM users
 WHERE name = XX

NAME SALARY

Andy 99999

Jignesh 88888

NAME SALARY

XX AA
YY BB

Database Magic!
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Compression Granularity

Choice #1: Block-level
→ Compress a block of tuples for the same table.

Choice #2: Tuple-level 
→ Compress the contents of the entire tuple (NSM-only).

Choice #3: Attribute-level
→ Compress a single attribute within one tuple (overflow).
→ Can target multiple attributes for the same tuple.

Choice #4: Column-level
→ Compress multiple values for one or more attributes 

stored for multiple tuples (DSM-only).
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Columnar Compression

Run-length Encoding

Bit-Packing Encoding

Bitmap Encoding

Delta / Frame-of-Reference Encoding

Incremental Encoding

Dictionary Encoding
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Run-length Encoding (RLE)

Compress runs of the same value in a single 
column into triplets:
→ The value of the attribute.
→ The start position in the column segment.
→ The # of elements in the run.

Requires the columns to be sorted intelligently to 
maximize compression opportunities.
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Run-length Encoding

Compressed Data
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SELECT isDead, COUNT(*)
  FROM users
 GROUP BY isDead
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Bit Packing

If the values for an integer attribute 
are smaller than the range of its given 
data type size, then reduce the 
number of bits to represent each 
value.

Use bit-shifting tricks to operate on 
multiple values in a single word.
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Original Data

int32

191

13

92

56

120

81

172

231

00000000 00000000 00000000 10111111

00000000 00000000 00000000 00001101

00000000 00000000 00000000 01011100

00000000 00000000 00000000 00111000

00000000 00000000 00000000 01111000

00000000 00000000 00000000 01010001

00000000 00000000 00000000 10101100

00000000 00000000 00000000 11100111

Original:
8 × 32-bits = 
256 bits

Compressed:
8 × 8-bits = 
64 bits

10111111

00001101

01011100

00111000

01111000

01010001

10101100

11100111



Patching / Mostly Encoding

A variation of bit packing for when an attribute's 
values are "mostly" less than the largest size, 
store them with smaller data type.
→ The remaining values that cannot be compressed are 

stored in their raw form.
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Source: Redshift Documentation

Original Data Compressed Data
offset

3

value

99999999Original:
8 × 32-bits = 
256 bits

Compressed:
(8 × 8-bits) +
16-bits + 32-bits
= 112 bits
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http://docs.aws.amazon.com/redshift/latest/dg/c_MostlyN_encoding.html


Bitmap Encoding

Store a separate bitmap for each unique value for 
an attribute where an offset in the vector 
corresponds to a tuple.
→ The ith position in the Bitmap corresponds to the ith tuple 

in the table.
→ Typically segmented into chunks to avoid allocating large 

blocks of contiguous memory.

Only practical if the value cardinality is low.

Some DBMSs provide bitmap indexes.
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Original Data

Bitmap Encoding
40

Compressed Data
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Bitmap Encoding: Example

Assume we have 10 million tuples.
43,000 zip codes in the US.
→ 10000000 × 32-bits = 40 MB
→ 10000000 × 43000 = 53.75 GB

Every time the application inserts a 
new tuple, the DBMS must extend 
43,000 different bitmaps.

There are compressed data structures 
for sparse data sets:
→ Roaring Bitmaps
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CREATE TABLE customer (
  id INT PRIMARY KEY,
  name VARCHAR(32),
  email VARCHAR(64),
  address VARCHAR(64),
  zip_code INT
);

https://roaringbitmap.org/
https://roaringbitmap.org/


Delta Encoding

Recording the difference between values that 
follow each other in the same column.
→ Store base value in-line or in a separate look-up table. 
→ Combine with RLE to get even better compression ratios.

Frame-of-Reference Variant: Use global min value.

Original Data

time64

12:01
12:00

12:03
12:02

12:04

temp

99.4
99.5

99.6
99.5

99.4

Compressed Data
time64

(+1,4)
12:00

temp

-0.1
99.5

+0.1
+0.1

-0.2

Compressed Data

time64

+1
12:00

+1
+1

+1

temp

-0.1
99.5

+0.1
+0.1

-0.2

64-bits + (4 × 16-bits) 
= 128 bits

5 × 64-bits
= 320 bits

64-bits + (2 × 16-bits) 
= 96 bits

42



Dictionary Compression

Replace frequent values with smaller fixed-length 
codes and then maintain a mapping (dictionary) 
from the codes to the original values
→ Typically, one code per attribute value.
→ Most widely used native compression scheme in DBMSs.

The ideal dictionary scheme supports fast encoding 
and decoding for both point and range queries.
→ Encode/Locate: For a given uncompressed value, convert 

it into its compressed form.
→ Decode/Extract: For a given compressed value, convert it 

back into its original form.

43



Dictionary: Order-preserving

The encoded values need to support the same 
collation as the original values.

SELECT * FROM users
 WHERE name LIKE 'And%'

Original Data Compressed Data

SELECT * FROM users
 WHERE name BETWEEN 10 AND 20

name

Andrea

Mr.Pickles

Andy

Jignesh

Mr.Pickles

code
10

20

30

40

value
Andrea

Andy

Jignesh

Mr.Pickles

name
10

40

20

30

40

So
rted

 
D
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n

a
ry
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Order-preserving Encoding

SELECT name FROM users
 WHERE name LIKE 'And%'

SELECT DISTINCT name
  FROM users
 WHERE name LIKE 'And%'

Still must perform scan on 
column

Only need to access dictionary

Original Data Compressed Data

name

Andrea

Mr.Pickles

Andy

Jignesh

Mr.Pickles

code
10
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30
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value
Andrea

Andy

Jignesh

Mr.Pickles

name
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40
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30

40
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Conclusion

It is important to choose the right storage model 
for the target workload:
→ OLTP = Row Store
→ OLAP = Column Store

DBMSs can combine different approaches for 
even better compression.

Dictionary encoding is probably the most useful 
scheme because it does not require pre-sorting.
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Next Class
48
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SELECT * FROM useracct
 WHERE userName = ?
   AND userPass = ?

Index
INSERT INTO useracct
 VALUES (?,?,…?)

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header userID userName userPass lastLoginhostnameheader

Next class!
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