
COMP 421: Files & Databases

Lecture 7: Indexes, B+ Trees

1

Announcements

Project #1 is due Sept 29th @ 11:59pm

Project #2 will be released Sept 29th

Mid-term Exam on Oct 15th
→ In-class in this room.
→ Get accommodations in now if you have not

2

Last Class

OLAP workloads demand specialized storage
solutions

For OLTP, mostly targeted lookups, updates,
deletes, inserts

How do we find the data we need?

• Which record IDs to request from storage
manager?

3

Disk-oriented DBMS

Disk

Memory

D
a

ta
b

a
se

 F
ile

1
HeaderDirectory

2
Header

3
Header

… Pages

B
u

ff
er

 P
o

o
l

4
Header

5
Header

Get Page #2

Directory

Pointer to Page #2

Execution
Engine

4

Frames2
Header

Moving Up The Stack...

Disk manager and Buffer Pool
Manager operate on low-level
constructs: page #, record ID

Which pages to get? This comes
from higher layers!

5

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

Disk D
a

ta
b

a
se

 F
ile

Searching a Heap File

SELECT * FROM useracct
 WHERE userName = ?
 AND userPass = ?

Index

NSM Disk Page

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

userID userName userPass lastLoginhostname

- - - --

header

header

header

header

6

Indexes vs. Filters

An index data structure over a subset of a table's
attributes that are organized and/or sorted to
provide the location of specific tuples using those
attributes.
→ Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a record
(likely) exists for a key but not where it is located.
→ Example: Bloom Filter

7

Today's Agenda

B+Tree Overview

Design Choices

Optimizations

8

9

B-Tree Family

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a
class of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

A screenshot of a cell phone

Description automatically generated

https://dl.acm.org/citation.cfm?id=319663
https://dl.acm.org/doi/10.1145/1734663.1734671
https://dl.acm.org/citation.cfm?doid=356770.356776
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README

B+Tree

A B+Tree is a self-balancing, ordered m-way tree
for searches, sequential access, insertions, and
deletions in O(logm n) where m is the tree fanout.
→ It is perfectly balanced (i.e., every leaf node is at the

same depth in the tree)
→ Every node other than the root is at least half-full

m/2-1 ≤ #keys ≤ m-1
→ Every inner node with k keys has k+1 non-null children.
→ Optimized for reading/writing large data blocks.

Some real-world implementations relax these
properties, but we will ignore that for now…

10

Index Key(s) Low→High

B+Tree Example

3510

6

Root Node

Inner / Non-Leaf
Nodes

Leaf Nodes

Sibling Pointers
<20 ≥20

<10 ≥10 <35 ≥35

20

<node*>|<key>|<node*>|<key>|<node*>

<key>|<value>|<key>|<value>

10 20 31 38 44

B+Tree Example

3510

<10 ≥10 <35 ≥35

<20 ≥20

20

Index Key(s) Low→High

6 10 20 31 38 44

"M words begin here"

Nodes

Every B+Tree node is comprised of an array of
key/value pairs.
→ The keys are derived from the index's target attribute(s).
→ The associated data will differ based on whether the

node is classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

13

B+Tree Leaf Node

B+tree Leaf Nodes

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

¤
Prev

¤
Next

#
Level

#
Slots

Values
¤ ¤ ¤ ¤ ¤ • • • ¤Key + Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID PageID

14

Sorted Key/Value Pairs
K1 K2¤ ¤ K3
K4

¤
¤ K5 ¤ • • •

Leaf Node Values

Approach #1: Record IDs
→ A pointer to the location of the tuple to

which the index entry corresponds.
→ Most common implementation.

Approach #2: Tuple Data
→ Index-Organized Storage
→ Primary Key Index: Leaf nodes store the

contents of the tuple.
→ Secondary Indexes: Leaf nodes store

tuples' primary key as their values.

15

B-Tree Vs. B+Tree

The original B-Tree from 1971 stored keys and
values in all nodes in the tree.
→ More space-efficient, since each key only appears once

in the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

16

B+Tree – INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

Source: Chris Re

17

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+Tree – INSERT Example (1)

≥4
and
<12

≥12

5 9 10 12 131 3

4 12

Insert 6

18

[4,12)

Node is full!

<4

B+TREE – INSERT EXAMPLE (1)

5 6 12 131 3

4 12

Insert 6

9 10

19

[4,12)<4

B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

20

[4,12)

9

[4,9) [9,12) ≥12

B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

21

Insert 8

5 6 8

B+TREE – INSERT EXAMPLE (2)
22

20 21 2313 14 159 115 71 3

5 9 13 19

17

Note: New Example/Tree.

Insert 17

B+TREE – INSERT EXAMPLE (3)
23

20 21 2313 14 15 179 115 71 3

5 9 13 19

No space in the node
where the new key
“belongs”.

Split the node!
Copy the middle
key.
Push the key up.

Insert 17
Insert 16

New Node!
Shuffle keys from the
node that triggered the
split.

B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16

But this is an “orphan”
node! No parent node
points to it.

B+TREE – INSERT EXAMPLE (3)
25

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16

Want to create a key, pointer
pair like this. But cannot insert it
in the root node, which is full.

Split the root. Grow the tree!

Insert 17
Insert 16

B+TREE – INSERT EXAMPLE (3)
26

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16 Split the root. Grow the tree!

Insert 17
Insert 16

B+TREE – INSERT EXAMPLE (3)
27

20 21 2313 14 159 115 71 3

5 9 16 19

16 17

13

Next, need to split the “old” root, then
point to the split nodes from the new root.

Insert 17
Insert 16

B+TREE – INSERT EXAMPLE (3)
28

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

[9,13)[5,9)<5 [13,16) [16,19) ≥19

≥13<13

Insert 17
Insert 16

B+Tree – DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only m/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to
L or sibling) from parent of L.

Source: Chris Re

29

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+Tree – DELETE Example (1)
30

5 9 101 3

4 12

9 10 12

9

6

Delete 6

B+Tree – DELETE Example (1)
31

5 9 101 3

4 12

9 12 14

9

Borrow from a “rich” sibling
node.

Delete 6

Could borrow from either
sibling.

B+Tree – DELETE Example (1)
32

5 9 101 3

4 9

12 14

12

9

≥9≥12

Delete 6

Need to update parent node!

B+Tree – DELETE Example (2)
33

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

Borrow from a “rich” sibling
node.

B+Tree – DELETE Example (2)
34

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

19

Need to update parent node!

B+Tree – DELETE Example (3)
35

21 2319 2013 179 115 71 3

5 9 19 21

13

Under-filled!
No “rich” sibling nodes to
borrow.
Merge with a sibling

Delete 15
Delete 19

B+Tree – DELETE Example (3)
36

20 21 2313 179 115 71 3

5 9 19

13

This node is
under-filled!
Pull-down.

Delete 15
Delete 19

B+Tree – DELETE Example (3)
37

20 21 2313 179 115 71 3

5 9 13 19

The tree has shrunk in height.

[9,13)[5,9)<5 ≥19[13,19)

Delete 15
Delete 19

Composite Index

A composite index is when the key is comprised
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides
a “prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)

38

CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

Sort Order

Null Handling

Selection Conditions

Find Key=(1,2)

Find Key=(*,1)
1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3
Find Key=(1,*) 1 ≤ 1

2 ≤ 31 ≤ 1

(1,*) ≤ (2,*)

(1,1) ∅(1,1)
(2,1)

(4,1)

40

B+Tree – Duplicate Keys

Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain

the duplicate keys.
→ This is more complex to maintain and modify.

41

B+Tree – Append Record ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7

42

<Key,RecordId>

B+Tree – Overflow Leaf Nodes

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6

43

Clustered Indexes

The table is stored in the sort order specified by
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will

automatically make a hidden primary key.

Other DBMSs cannot use them at all.

46

Index Scan Page Sorting

Retrieving tuples in the order they
appear in a is generally inefficient
due to redundant reads.

A better approach is to find all the
tuples that the query needs and
then sort them based on their page
ID.

The DBMS retrieves each page once.

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction

47

Clustered Indexes
48

An extreme solution is "index
organized storage"

 -Store pages in sorted order also

Traverse to the left-most leaf page
and then retrieve tuples from all leaf
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

Scan Direction

B+Tree Design Choices

Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search

49

https://dl.acm.org/citation.cfm?id=2185842
https://www.nowpublishers.com/article/Details/DBS-070

Node Size

The slower the storage device, the larger the
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

50

Merge Threshold

Some DBMSs do not always merge nodes when
they are half full.
→ Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to let smaller nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).

51

https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree

Variable-length Keys

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.
→ Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value

list within the node.

52

https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree

Intra-Node Search

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key

based on known distribution of keys.

53

Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

_mm_cmpeq_epi32_mask(a, b)

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00 0 0 01

Find Key=8

Find Key=8

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892

Optimizations

Prefix Compression

Deduplication

Suffix Truncation

Pointer Swizzling

Bulk Insert

Buffered Updates

Many more…

54

Prefix Compression

Sorted keys in the same leaf node
are likely to have the same prefix.

Instead of storing the entire key
each time, extract common prefix
and store only unique suffix for each
key.
→ Many variations.

robbed robbing robot

bed bing ot

Prefix: rob

55

Deduplication

Non-unique indexes can end up
storing multiple copies of the same
key in leaf nodes.

The leaf node can store the key once
and then maintain a "posting list" of
tuples with that key.

57

K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4

Suffix Truncation

The keys in the inner nodes are only
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is
needed to correctly route probes
into the index.

abcdefghijk lmnopqrstuv

… …… …

abc lmn

58

Pointer Swizzling

Nodes use page ids to reference
other nodes in the index. The DBMS
must get the memory location from
the page table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers
instead of page ids. This avoids
address lookups from the page
table.

59

6 9

6 71 3

Page #2

Page #3

B
u

ff
er

 P
o

o
l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find(3)

<Page*>

<Page*>

Bulk Insert

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the
index from the bottom up.

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

60

Observation

Modifying a B+tree is expensive when the DBMS
has to split/merge nodes.
→ Worst case is when DBMS reorganizes the entire tree.
→ The worker that causes a split/merge is responsible for

doing the work.

What if there was a way to delay updates and
then apply multiple changes together in a batch?

61

Write-Optimized B+Tree (Bε-Tree)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.
→ aka Fractal Trees / Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

62

20

35

6 3810 20

10

Insert 7

Insert 7Mod
Log

Delete 10

Delete 10

Find 10Insert 40

Insert 40

https://en.wikipedia.org/wiki/Fractal_tree_index

Conclusion

The venerable B+Tree is (almost) always a good
choice for your DBMS.

68

Next Week

Zhongrui takes over for 2 classes

More algorithms and data structures used inside
the DBMS

 Hash Tables

 Sorting (external sort)

69

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Last Class
	Slide 4: Disk-oriented DBMS
	Slide 5: Moving Up The Stack...
	Slide 6: Searching a Heap File
	Slide 7: Indexes vs. Filters
	Slide 8: Today's Agenda

	B-Tree
	Slide 9: B-Tree Family
	Slide 10: B+Tree
	Slide 11: B+Tree Example
	Slide 12: B+Tree Example
	Slide 13: Nodes
	Slide 14: B+tree Leaf Nodes
	Slide 15: Leaf Node Values
	Slide 16: B-Tree Vs. B+Tree

	B+Tree Insert
	Slide 17: B+Tree – INSERT
	Slide 18: B+Tree – INSERT Example (1)
	Slide 19: B+TREE – INSERT EXAMPLE (1)
	Slide 20: B+TREE – INSERT EXAMPLE (1)
	Slide 21: B+TREE – INSERT EXAMPLE (1)
	Slide 22: B+TREE – INSERT EXAMPLE (2)
	Slide 23: B+TREE – INSERT EXAMPLE (3)
	Slide 24: B+TREE – INSERT EXAMPLE (3)
	Slide 25: B+TREE – INSERT EXAMPLE (3)
	Slide 26: B+TREE – INSERT EXAMPLE (3)
	Slide 27: B+TREE – INSERT EXAMPLE (3)
	Slide 28: B+TREE – INSERT EXAMPLE (3)

	B+Tree Delete
	Slide 29: B+Tree – DELETE
	Slide 30: B+Tree – DELETE Example (1)
	Slide 31: B+Tree – DELETE Example (1)
	Slide 32: B+Tree – DELETE Example (1)
	Slide 33: B+Tree – DELETE Example (2)
	Slide 34: B+Tree – DELETE Example (2)
	Slide 35: B+Tree – DELETE Example (3)
	Slide 36: B+Tree – DELETE Example (3)
	Slide 37: B+Tree – DELETE Example (3)

	B+Tree Additional Info
	Slide 38: Composite Index
	Slide 40: Selection Conditions
	Slide 41: B+Tree – Duplicate Keys
	Slide 42: B+Tree – Append Record ID
	Slide 43: B+Tree – Overflow Leaf Nodes

	Use in a DBMS
	Slide 46: Clustered Indexes
	Slide 47: Index Scan Page Sorting
	Slide 48: Clustered Indexes

	Design Choices
	Slide 49: B+Tree Design Choices
	Slide 50: Node Size
	Slide 51: Merge Threshold
	Slide 52: Variable-length Keys
	Slide 53: Intra-Node Search

	Optimizations
	Slide 54: Optimizations
	Slide 55: Prefix Compression
	Slide 57: Deduplication
	Slide 58: Suffix Truncation
	Slide 59: Pointer Swizzling
	Slide 60: Bulk Insert

	B-Epsilon Trees
	Slide 61: Observation
	Slide 62: Write-Optimized B+Tree (Bε-Tree)

	Conclusion
	Slide 68: Conclusion
	Slide 69: Next Week

