
COMP 421: Files & Databases

Lecture 7: Indexes, B+ Trees
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Announcements

Project #1 is due Sept 29th @ 11:59pm

Project #2 will be released Sept 29th

Mid-term Exam on Oct 15th 
→ In-class in this room.
→ Get accommodations in now if you have not
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Last Class

OLAP workloads demand specialized storage 
solutions

For OLTP, mostly targeted lookups, updates, 
deletes, inserts

How do we find the data we need?

• Which record IDs to request from storage 
manager?
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Disk-oriented DBMS
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Moving Up The Stack...

Disk manager and Buffer Pool 
Manager operate on low-level 
constructs: page #, record ID

Which pages to get?  This comes 
from higher layers!
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Indexes vs. Filters

An index data structure over a subset of a table's 
attributes that are organized and/or sorted to 
provide the location of specific tuples using those 
attributes.
→ Example: B+Tree

A filter is a data structure that answers set 
membership queries; it tells you whether a record 
(likely) exists for a key but not where it is located.
→ Example: Bloom Filter
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Today's Agenda

B+Tree Overview

Design Choices

Optimizations
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B-Tree Family

There is a specific data structure called a B-Tree.

People also use the term to generally refer to a 
class of balanced tree data structures:
→ B-Tree (1970)
→ B+Tree (1973)
→ B*Tree (1977?)
→ Blink-Tree (1981)
→ Bε-Tree (2003)
→ Bw-Tree (2013)

A screenshot of a cell phone

Description automatically generated

https://dl.acm.org/citation.cfm?id=319663
https://dl.acm.org/doi/10.1145/1734663.1734671
https://dl.acm.org/citation.cfm?doid=356770.356776
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README


B+Tree

A B+Tree is a self-balancing, ordered m-way tree 
for searches, sequential access, insertions, and 
deletions in O(logm n) where m is the tree fanout.
→ It is perfectly balanced (i.e., every leaf node is at the 

same depth in the tree)
→ Every node other than the root is at least half-full 

m/2-1 ≤ #keys ≤ m-1
→ Every inner node with k keys has k+1 non-null children.
→ Optimized for reading/writing large data blocks.

Some real-world implementations relax these 
properties, but we will ignore that for now…
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Index Key(s) Low→High

B+Tree Example

3510

6

Root Node

Inner / Non-Leaf 
Nodes

Leaf Nodes

Sibling Pointers
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<10 ≥10 <35 ≥35
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B+Tree Example

3510

<10 ≥10 <35 ≥35

<20 ≥20

20

Index Key(s) Low→High

6 10 20 31 38 44

"M words begin here"



Nodes

Every B+Tree node is comprised of an array of 
key/value pairs.
→ The keys are derived from the index's target attribute(s). 
→ The associated data will differ based on whether the 

node is classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.
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B+Tree Leaf Node

B+tree Leaf Nodes

Sorted Keys
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Leaf Node Values

Approach #1: Record IDs
→ A pointer to the location of the tuple to 

which the index entry corresponds.
→ Most common implementation.

Approach #2: Tuple Data
→ Index-Organized Storage
→ Primary Key Index: Leaf nodes store the 

contents of the tuple.
→ Secondary Indexes: Leaf nodes store 

tuples' primary key as their values.
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B-Tree Vs. B+Tree

The original B-Tree from 1971 stored keys and 
values in all nodes in the tree.
→ More space-efficient, since each key only appears once 

in the tree.

A B+Tree only stores values in leaf nodes. Inner 
nodes only guide the search process.
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B+Tree – INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.

If L has enough space, done!

Otherwise, split L keys into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, 
but push up middle key. 

Source: Chris Re
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https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx


B+Tree – INSERT Example (1)

≥4 
and
<12

≥12

5 9 10 12 131 3

4 12

Insert 6

18

[4,12)

Node is full!

<4



B+TREE – INSERT EXAMPLE (1)

5 6 12 131 3

4 12

Insert 6

9 10

19

[4,12)<4



B+TREE – INSERT EXAMPLE (1)

<4

5 6 12 131 3

4 ? 12

Insert 6

9 10

20

[4,12)

9

[4,9) [9,12) ≥12



B+TREE – INSERT EXAMPLE (1)

12 131 3

4 9 12

Insert 6

9 10

21

Insert 8

5 6 8



B+TREE – INSERT EXAMPLE (2)
22

20 21 2313 14 159 115 71 3

5 9 13 19

17

Note: New Example/Tree.

Insert 17



B+TREE – INSERT EXAMPLE (3)
23

20 21 2313 14 15 179 115 71 3

5 9 13 19

No space in the node 
where the new key 
“belongs”.

Split the node!
Copy the middle 
key.
Push the key up.

Insert 17
Insert 16



New Node!
Shuffle keys from the 
node that triggered the 
split. 

B+TREE – INSERT EXAMPLE (3)
24

20 21 2313 14 15 179 115 71 3

5 9 13 19

Insert 17
Insert 16



But this is an “orphan” 
node! No parent node 
points to it.

B+TREE – INSERT EXAMPLE (3)
25

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16

Want to create a key, pointer 
pair like this. But cannot insert it 
in the root node, which is full.

Split the root. Grow the tree!

Insert 17
Insert 16



B+TREE – INSERT EXAMPLE (3)
26

20 21 2313 14 159 115 71 3

5 9 13 19

16 17

16 Split the root. Grow the tree!

Insert 17
Insert 16



B+TREE – INSERT EXAMPLE (3)
27

20 21 2313 14 159 115 71 3

5 9 16 19

16 17

13

Next, need to split the “old” root, then 
point to the split nodes from the new root.

Insert 17
Insert 16



B+TREE – INSERT EXAMPLE (3)
28

20 21 2313 14 159 115 71 3

5 9

16 17

13

16 19

[9,13)[5,9)<5 [13,16) [16,19) ≥19

≥13<13

Insert 17
Insert 16



B+Tree – DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done! 
If L has only m/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent 

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to 
L or sibling) from parent of L.

Source: Chris Re
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https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx


B+Tree – DELETE Example (1)
30

5 9 101 3

4 12

9 10 12

9

6

Delete 6



B+Tree – DELETE Example (1)
31

5 9 101 3

4 12

9 12 14

9

Borrow from a “rich” sibling 
node.

Delete 6

Could borrow from either 
sibling.



B+Tree – DELETE Example (1)
32

5 9 101 3

4 9

12 14

12

9

≥9≥12

Delete 6

Need to update parent node!



B+Tree – DELETE Example (2)
33

21 2317 19 2013 159 115 71 3

5 9 17 21

13

Note: New Example/Tree.

Delete 15

Borrow from a “rich” sibling 
node.



B+Tree – DELETE Example (2)
34

21 2319 2013 179 115 71 3

5 9 17 21

13Delete 15

19

Need to update parent node!



B+Tree – DELETE Example (3)
35

21 2319 2013 179 115 71 3

5 9 19 21

13

Under-filled!
No “rich” sibling nodes to 
borrow.
Merge with a sibling

Delete 15
Delete 19



B+Tree – DELETE Example (3)
36

20 21 2313 179 115 71 3

5 9 19

13

This node is
under-filled!
Pull-down.

Delete 15
Delete 19



B+Tree – DELETE Example (3)
37

20 21 2313 179 115 71 3

5 9 13 19

The tree has shrunk in height.

[9,13)[5,9)<5 ≥19[13,19)

Delete 15
Delete 19



Composite Index

A composite index is when the key is comprised 
of two or more attributes.
→ Example: Index on <a,b,c>

DBMS can use B+Tree index if the query provides 
a “prefix” of composite key.
→ Supported: (a=1 AND b=2 AND c=3)
→ Supported: (a=1 AND b=2)
→ Rarely Supported: (b=2), (c=3)
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CREATE INDEX my_idx ON xxx (a, b DESC, c NULLS FIRST);

Sort Order

Null Handling



Selection Conditions

Find Key=(1,2)

Find Key=(*,1)
1,3 2,2 3,3

1,3 2,11,1 1,2 2,2 2,3 3,3 3,4 4,1

*,1 < *,3
Find Key=(1,*) 1 ≤ 1

2 ≤ 31 ≤ 1

(1,*) ≤ (2,*)

(1,1) ∅(1,1)
(2,1)

(4,1)
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B+Tree – Duplicate Keys

Approach #1: Append Record ID
→ Add the tuple's unique Record ID as part of the key to 

ensure that all keys are unique.
→ The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes
→ Allow leaf nodes to spill into overflow nodes that contain 

the duplicate keys.
→ This is more complex to maintain and modify.
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B+Tree – Append Record ID

<5 <9 ≥9

6 7 8 9 131 3

5 9

Insert 6Insert <6,(Page,Slot)>

7 8

7 9

6

≥9<9<7
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<Key,RecordId>



B+Tree – Overflow Leaf Nodes

<5 <7 ≥9

6 7 8 9 131 3

5 9

6

Insert 6

Insert 7

7

Insert 6

6
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Clustered Indexes

The table is stored in the sort order specified by 
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table does not contain a primary key, the DBMS will 

automatically make a hidden primary key.

Other DBMSs cannot use them at all.
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Index Scan Page Sorting

Retrieving tuples in the order they 
appear in a is generally inefficient 
due to redundant reads.

A better approach is to find all the 
tuples that the query needs and 
then sort them based on their page 
ID.

The DBMS retrieves each page once.

101 102 103 104

Page 102
Page 103

Page 102
Page 104
Page 104

Page 103
Page 102

Page 101

Page 104
Page 103

Page 102

Page 103

Page 102

Page 101

Page 102
Page 102

Page 103

Page 104

Page 103

Page 104

Page 101

Page 102

Page 103

Page 104

Scan Direction
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Clustered Indexes
48

An extreme solution is "index 
organized storage"

    -Store pages in sorted order also

Traverse to the left-most leaf page 
and then retrieve tuples from all leaf 
pages.

This will always be better than
sorting data for each query.

Table Pages

101 102 103 104

Scan Direction



B+Tree Design Choices

Node Size

Merge Threshold

Variable-Length Keys

Intra-Node Search
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https://dl.acm.org/citation.cfm?id=2185842
https://www.nowpublishers.com/article/Details/DBS-070


Node Size

The slower the storage device, the larger the 
optimal node size for a B+Tree.
→ HDD: ~1MB
→ SSD: ~10KB 
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

50



Merge Threshold

Some DBMSs do not always merge nodes when 
they are half full.
→ Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the 
amount of reorganization.

It may also be better to let smaller nodes exist 
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).
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https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree


Variable-length Keys

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.
→ Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value 

list within the node.
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https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree


Intra-Node Search

Approach #1: Linear
→ Scan node keys from beginning to end.
→ Use SIMD to vectorize comparisons.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key 

based on known distribution of keys.
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Find Key=8
5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

Offset: (8-4)*7/(10-4)=4

_mm_cmpeq_epi32_mask(a, b)

_mm_cmpeq_epi32_mask(a, b)

8 8 88

0 0 00 0 0 01

Find Key=8

Find Key=8

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892


Optimizations

Prefix Compression

Deduplication

Suffix Truncation

Pointer Swizzling

Bulk Insert

Buffered Updates

Many more…
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Prefix Compression

Sorted keys in the same leaf node 
are likely to have the same prefix.

Instead of storing the entire key 
each time, extract common prefix 
and store only unique suffix for each 
key.
→ Many variations.

robbed robbing robot

bed bing ot

Prefix: rob
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Deduplication

Non-unique indexes can end up 
storing multiple copies of the same 
key in leaf nodes.

The leaf node can store the key once 
and then maintain a "posting list" of 
tuples with that key.
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K1 V1 K1 V2 K1 V3 K2 V4

K1 V1 V2 V3 K2 V4



Suffix Truncation

The keys in the inner nodes are only 
used to "direct traffic".
→ We don't need the entire key.

Store a minimum prefix that is 
needed to correctly route probes 
into the index.

abcdefghijk lmnopqrstuv

… …… …

abc lmn
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Pointer Swizzling

Nodes use page ids to reference 
other nodes in the index. The DBMS 
must get the memory location from 
the page table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers 
instead of page ids. This avoids 
address lookups from the page 
table.
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Bulk Insert

The fastest way to build a new 
B+Tree for an existing table is to first 
sort the keys and then build the 
index from the bottom up.

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13
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Observation

Modifying a B+tree is expensive when the DBMS 
has to split/merge nodes.
→ Worst case is when DBMS reorganizes the entire tree.
→ The worker that causes a split/merge is responsible for 

doing the work.

What if there was a way to delay updates and 
then apply multiple changes together in a batch?
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Write-Optimized B+Tree (Bε-Tree)

Instead of immediately applying 
updates, store changes to key/value 
entries in log buffers at inner nodes.
→ aka Fractal Trees / Bε-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.
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Insert 7
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Delete 10

Delete 10
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https://en.wikipedia.org/wiki/Fractal_tree_index


Conclusion

The venerable B+Tree is (almost) always a good 
choice for your DBMS.
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Next Week

Zhongrui takes over for 2 classes

More algorithms and data structures used inside 
the DBMS

 Hash Tables

 Sorting (external sort)
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