COMP 421: Files & Databases

Lecture 7: Indexes, B+ Trees

COMPUTER SCIENCE

Announcements

Project #1 is due Sept 29" @ 11:59pm

Project #2 will be released Sept 29t

Mid-term Exam on Oct 15"

— In-class in this room.
— Get accommodations in now if you have not

Last Class 3

OLAP workloads demand specialized storage
solutions

For OLTP, mostly targeted lookups, updates,
deletes, inserts

How do we find the data we need?

* Which record IDs to request from storage
manager?

COMPUTER SCIENCE

Disk-oriented DBMS

CetPage 7z % Execution
l Pointer to Page #2 a Engine
8 e ry —T —
| [HEE
E || 2 — Frames
S (L]
m ? L
- ;
= : N
W, Directory Hea_a’erl He ade rI Heade rI Heade rI Heade rI
Q I:D:l
S Xy’
S| 1 2 3 4 5 — Pages
S| (LI
b
c —
Q

Moving Up The Stack... 5

Disk manager and Buffer Pool Query Planning

Manager operate on low-level

constructs: page #, record ID Operator Execution
Access Methods

Which pages to get? This comes
from higher layers! ‘ Buffer Pool Manager |

Disk Manager

COMPUTER SCIENCE

Searching a Heap File

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ? »
Index
NSM Disk Page

header | userID JuserNamefuserPass|hostname| lastlLogin |

header | userID JuserNamefuserPass|hostname| lastlLogin

header | userID JuserNamefuserPassfhostname| lastlLogin

header - - - - =

Disk
fl| UNC

DEPARTMENT OF
COMPUTER SCIENCE

Database File

Indexes vs. Filters

An index data structure over a subset of a table's
attributes that are organized and/or sorted to
provide the location of specific tuples using those

attributes.
— Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a record

(likely) exists for a key but not where it is located.
— Example: Bloom Filter

Today's Agenda 8

B+Tree Overview
Design Choices
Optimizations

COMPUTER SCIENCE

/ README &/

Blame

E
src/backend/aecess/nbtree/READM

Btree Indexing

Yao's
rect implementation of Lehman and

hm (P. Lehman and S. Yao, .
ACM Transactions

This directory contains a cor R
rency B-tree management g | e

o current Operations on B- 5 . i

4 December 1981, pp 650-67) .

’ ed in Lanin and

ithm,

high-conc
Efficient Locking for Con

No.

stems, Vol 6, _ . .

on Database Sy . n of the deletion logic e Algor
. A symmetric Concurrent B-Tree Alg

pp 380-389).

use a simplified vers

shasha (V. Lanin and D. Shasha,

g = ce
P DCEEdl“ = of 1986 Fall Joint Cor pUIEI co (=)

ithm
The basic Lehman & Yao Algorit

B-Tree

tment, Purdue Unwersity, West Lafayette, Indiana 47907

become, de facto, a standard for file organization. File indexes of users,
tabase systems, and general-purpose access methods have all been proposed

inted using B-trees This paper reviews B-trees and shows wh.

v they have

ssful It discusses the major variations of the B-tree, especially the B*-tree,
e relative merits and costs of each implementation. It illustrates a general
method which uses a B-tree,

H Phrases: B-tree, B*-tree, B'-tree, file organization, index

5:3.733.744.334 34

facilities available
ems allow users to

data from large
ion called files. A
an item and place
ore it can be pro-
e good use of the
must organize files
P retrieval process

file organization
bf retrieval to be
O broad classes of
ch can be illus-
amples:
mployee file, pre-
bf all employees’
addresses,” and
mployee file, ex-
ormation about
Smith”,
binet with three
e for each em-
e drawers might be labeled “A-
-R,” and “S-Z,” while the folders

Permassion to coj
ributed for direct commercial
ppear, and notice 1s give;
y otherwise, or to republis
©1979 ACM 0010-4892/79/0600~0121 $00 75

might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the. labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file, If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-

ithout fee all or part of this material is granted provided that the copies are not made or

ht notice and the title of the Publication and its
ion of the Association for Computing Machinery. To

a fee and/or specific permussion,

Computing Surveys, Vol 11, No 2, June 1979

https://dl.acm.org/citation.cfm?id=319663
https://dl.acm.org/doi/10.1145/1734663.1734671
https://dl.acm.org/citation.cfm?doid=356770.356776
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README

B+Tree

A B+Tree is a self-balancing, ordered m-way tree
for searches, sequential access, insertions, and

deletions in O(log,, n) where m is the tree fanout.
— It is perfectly balanced (i.e., every leaf node is at the
same depth in the tree)
— Every node other than the root is at least half-full
m/2-1 < #keys < m-1
— Every inner node with k keys has k+1 non-null children.
— Optimized for reading/writing large data blocks.

Some real-world implementations relax these
properties, but we will ignore that for now...

B+Tree Example

<node*> | <key> | <node*>|<key>|<node*>

20 Root Node

‘M . =20
Sibling Pointers X Inner / Non-Leaf

10 35
Nodes

<10 =10 <35 \\§?5

6 | —1el] [——l20]l31[.—138][44]] Leaf Nodes

A

B+Tree Example

20

10 < 1135

sl =Tiell —T2e[[31—]38][44

Index Key(s) Low—=>Hiqgh

"M words begin here"

Nodes

Every B+Tree node is comprised of an array of

key/value pairs.
— The keys are derived from the index's target attribute(s).

— The associated data will differ based on whether the
node is classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

EN
COMPUTER SCIENCE

B+tree Leaf Nodes

B+Tree Leaf Node
4| Level Slots Prev Next
[# # o o
L 4 v

* | SBPRt ey Vatue Pairs —

r__|

— ———— PagelD K| o | K | a]|K]|a= IPagelD
..... K 4 o] K 5 o] L4 0‘

........... o W o O |eeel &

COMPUTER SCIENCE

Leaf Node Values

Microsoft”

Approach #1: Record IDs @ PostgresQl #SQL Server
— A pointer to the location of the tuple to ORACLE
which the index entry corresponds.
— Most common implementation.
Approach #2: Tuple Data icrosoft
— Index-Organized Storage ﬂQLim ZSQLServer
— Primary Key Index: Leaf nodes store the |
contents of the tuple. D\MysoL. ORACLE

— Secondary Indexes: Leaf nodes store
tuples' primary key as their values.

m | UNC
” | DEPARTMENT OF
COMPUTER SCIENCE

B-Tree Vs. B+Tree

The original B-Tree from 1971 stored keys and
values in all nodes in the tree.

— More space-efficient, since each key only appears once
in the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.

B+Tree — INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.
If L has enough space, done!

Otherwise, split L keys into L and a new node L,
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L, into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

ﬁ UI\JM(;T o Source: Chris Re

DEPAR’
COMPUTER SCIENCE

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+Tree — INSERT Example (1)

Insert 6

12
(]2)
<12 o \
91[10
Node is full! R

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (1)

Insert 6

4|12
/—y /[4’12)\

" "
1113 5| 6 [9|10 12|]13

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (1)

Insert 6

4119 (12
113 5(| 6 9 ([10 121113

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (1)

Insert 6
Insert 8

1113 51168 91|10 12](13

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (2)

Insert 17

Note: New Example/Tree.

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (3)

Insert 16

113 5|7 9111 13 1415|17 20(|121|(23

Splsptive modeé node
Whpyetbieernizld/key
‘Hmylongs”.

Push the key up.

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (3)

Insert 16
5 13([19
1|3 7 9|11 13)[14{[15{[17 | |[20][21(|23
New Node!
Shuffle keys from the
node that triggered the

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

split.

B+TREE — INSERT EXAMPLE (3)

Want to create a key, pointer
Insert 16 pair like this. But cannot insert it
in the root node, which is full.

S|[9][13)]19 16' Split the root. Grow the tree!
1|3 5|7 9 (|11 13([14)[15(| || [|16][17 | |[20][21(|23
But this is an “orphan”

node! No parent node
points to it.

=)

DEPARTMENT OF
COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (3)

Insert 16

511911319 16' Split the root. Grow the tree!

— /// —

1|3 5|7 9 (|11 13([14)[15(| || [|16][17 | |[20][21(|23

COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (3)

13

Insert 16

| : Next, need to split the “old” root, then
S|{9|J16]1 point to the split nodes from the new root.

1|3 5|7 9 (|11 13([14)[15(| ||||16][17 20|[21]|23

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

B+TREE — INSERT EXAMPLE (3)

13

Insert 16 <13 __A 213

\
5([9 16][19)
/ \[5,9) [9,13) [13,16) Mw

113 5|7 9111 13]|114/[15 16(|17 2@| 21{|23

COMPUTER SCIENCE

B+Tree — DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!

If L has only m/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

— |f re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to
L or sibling) from parent of L.

-Iy I?El"-’\ll"l']ﬂE]\'T‘()F source- Chrls Re

COMPUTER SCIENCE

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+Tree — DELETE Example (1)

Delete 6

COMPUTER SCIENCE

B+Tree — DELETE Example (1)

Delete 6

1| 3 MsTT 1T TN [er2][14

Borrow from a “rich” sibling
node.

Could borrow from either
sibling.

COMPUTER SCIENCE

B+Tree — DELETE Example (1)

Delete 6

1 (] 3 519 121(14

Need to update parent node!

COMPUTER SCIENCE

B+Tree — DELETE Example (2)

Delete 15 13
5(| 9 17/|21
/ \ K’ g ~~\\ \
1|3 5|7 9 (|11 13 17)[19]|20]| || ||21/|23]
Bon'from a “rich” sibling

node.

Note: New Example/Tree.
—_N
@ Hﬁg}' OF

B+Tree — DELETE Example (2)

Delete 15 13
/—/ \
—
5|9 19[21
1|3 5|7 9 (|11 13)[17 19]|20] 21/|23

Need to update parent node!

COMPUTER SCIENCE

B+Tree — DELETE Example (3)

13
Delete 19 /_/ N—_
5(/9 19
1|3 5|7 9([11 1317 20| [I2123 |
rfilled!
No “rich” sibling nodes to
borrow.

Merge with a sibling

B+Tree — DELETE Example (3)

13

Delete 19 /_/ N
} This node is
5119 » « [19 I under-filled!

113 5117 9111 13117 20(|121|(23

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

B+Tree — DELETE Example (3)

Delete 15
Delete 19
The tree has shrunk in height.
5[9|[13[|19]
_——
11|13 5|7 9|11 13|17 20(|21(|23

COMPUTER SCIENCE

Composite Index

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a,b,c>

(Sort Order

CREATE INDEX my_idx ON xxx (a,

DESC, || NULLS FIRST);

COMPUTER SCIENCE

\Null Handling

DBMS can use B+Tree index if the query provides

a “prefix” of composite key.

— Supported: (a=1 AND b=2 AND c=3)

— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)

Selection Conditions

Find Key=(1,2)
Find Key=(1,*) 1< 1

i _ dEB< %,3
Find Key=(*,1) | g P
1,1|[1,2 1,3(]2,1 2,2((2,3 3,3([3,4 [4,1
1t % oo B
(1,1) (1,1) Z (4,1)

2,1

COMPUTER SCIENCE

B+Tree — Duplicate Keys

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.

B+Tree — Append Record ID

Insert €6, (Page,Slot)>

5[7] 9
1] 3 —1| 6| 6 17| 8 Bl

“
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Ry
Pl

COMPUTER SCIENCE

B+Tree — Overflow Leaf Nodes

Insert 6
Insert 7 5 (| g
Insert 6 ‘/<5/<7 %
11| 3 Al sl 7]l 8| —1| 9|13
6| 7] 6

COMPUTER SCIENCE

Clustered Indexes

The table is stored in the sort order specified by
the primary key.
— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.

— |If a table does not contain a primary key, the DBMS wiill
automatically make a hidden primary key.

Other DBMSs cannot use them at all.

COMPUTER SCIENCE

Index Scan Page Sorting

Retrieving tuples in the order they
appear in a is generally inefficient
due to redundant reads.

Scan Direction

A better approach is to find all the 101 102 103 104
tuples that the query needs and

. [Page 102 [Page 101

then sort them based on their page [Page 103 Page 101

] Page 104 1 Page 102

ID. Page 104 Page 102

. 1 Page 102 Page 102

The DBMS retrieves each page once. [Page 103 » Page 102

[Page 102 [] Page 103

Page 102 Page 103

1 Page 101 Page 103

1 Page 103 [Page 104

1 Page 104 Page 104

m UNC [Page 103 Page 104

Clustered Indexes

An extreme solution is "index
organized storage"

Scan Direction

-Store pages in sorted order also

Z AN
£ 441NN

Traverse to the left-most leaf page 101 || 102 || 103 || 104
and then retrieve tuples from all leaf Table Pages

pages.

This will always be better than
sorting data for each query.

COMPUTER SCIENCE

B+Tree Design C- -~~~

Foundations and Trends® in
Databases

13:3

Node Size
Merge Threshold
Variable-Length Keys
Intra-Node Search

COMPUTER SCIENCE

https://dl.acm.org/citation.cfm?id=2185842
https://www.nowpublishers.com/article/Details/DBS-070

Node Size

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals

COMPUTER SCIENCE

Merge Threshold

Some DBMSs do not always merge nodes when
they are half full.

— Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to let smaller nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).

https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree

Variable-length Keys

Approach #1: Pointers
— Store the keys as pointers to the tuple’s attribute.
— Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes
— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
— Embed an array of pointers that map to the key + value
list within the node.

https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree

Intra-Node Search

Approach #1: Linear /@ ? _%F!&J(1 5@\ ?\@

— Scan node keys from beginning to end. Al s Tell7 I s s 10

— Use SIMD to vectorize comparisons. t \ \ I [

Approach #2: Binary 3| s ﬁ;Ln ey=8

— Jump to middle key, pivot left/right alls1lell71ll sllgllie
depending on comparison. ===

_mm_cmpeq_epi32_mask(a, b)

Approach #3: Interpolation .
— Approximate location of desired key Offselt if8ck KEA(18-4)=4

based on known distribution of keys. 415|678 9][10

*

m | UNC
” | DEPARTMENT OF
COMPUTER SCIENCE

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892

| UNC
l_ﬁ DEPARTMENT OF
COMPUTER SCIENCE

Optimizations

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert
Buffered Updates
Many more...

Prefix Compression

Sorted keys in the same leaf node
are likely to have the same prefix.

robbed || robbing|| robot

Instead of storing the entire key

each time, extract common prefix ’,
and store only unique suffix for each

key. Prefix: rob

— Many variations. bed |[bing|| ot

Deduplication

Non-unique indexes can end up
storing multiple copies of the same

key in leaf nodes. KV LKV, K Vs | K, |V,
The leaf node can store the key once "

and then maintain a "posting list" of

tuples with that key Ko [Vo [Vo | Vs | Ky |V,

Suffix Truncation

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is
needed to correctly route probes
into the index.

COMPUTER SCIENCE

abc 1mn|

Pointer Swizzling

Nodes use page ids to reference Find(3)
other nodes in the index. The DBMS [6]l 9
must get the memory location from S RepgeH2
the page table during traversal. “Ripgehd
If a page is pinned in the buffer pool, nll-l‘lnll-l
then we can store raw pointers "1 Page #2 » <Page>
instead of page ids. This avoids i Page #3 > <Page*>
address lookups from the page) | . |
° Header| Heade. Header
table. Q. 1 9 3
&
5

Bulk Insert

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the
index from the bottom up.

Keys:3,7,9,13,6,1
Sorted Keys: 1,3,6,7,9, 13

)
COMPUTER SCIENCE

Observation

Modifying a B+tree is expensive when the DBMS

has to split/merge nodes.
— Worst case is when DBMS reorganizes the entire tree.

— The worker that causes a split/merge is responsible for
doing the work.

What if there was a way to delay updates and
then apply multiple changes together in a batch?

ENT
COMPUTER SCIENCE

Write-Optimized B+Tree (Be-Tree)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.

— aka Fractal Trees / Be-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

Mod

Enedrt040
Delete 10

=

https://en.wikipedia.org/wiki/Fractal_tree_index

Conclusion

The venerable B+Tree is (almost) always a good
choice for your DBMS.

COMPUTER SCIENCE

Next Week

Zhongrui takes over for 2 classes

More algorithms and data structures used inside
the DBMS

Hash Tables
Sorting (external sort)

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Last Class
	Slide 4: Disk-oriented DBMS
	Slide 5: Moving Up The Stack...
	Slide 6: Searching a Heap File
	Slide 7: Indexes vs. Filters
	Slide 8: Today's Agenda

	B-Tree
	Slide 9: B-Tree Family
	Slide 10: B+Tree
	Slide 11: B+Tree Example
	Slide 12: B+Tree Example
	Slide 13: Nodes
	Slide 14: B+tree Leaf Nodes
	Slide 15: Leaf Node Values
	Slide 16: B-Tree Vs. B+Tree

	B+Tree Insert
	Slide 17: B+Tree – INSERT
	Slide 18: B+Tree – INSERT Example (1)
	Slide 19: B+TREE – INSERT EXAMPLE (1)
	Slide 20: B+TREE – INSERT EXAMPLE (1)
	Slide 21: B+TREE – INSERT EXAMPLE (1)
	Slide 22: B+TREE – INSERT EXAMPLE (2)
	Slide 23: B+TREE – INSERT EXAMPLE (3)
	Slide 24: B+TREE – INSERT EXAMPLE (3)
	Slide 25: B+TREE – INSERT EXAMPLE (3)
	Slide 26: B+TREE – INSERT EXAMPLE (3)
	Slide 27: B+TREE – INSERT EXAMPLE (3)
	Slide 28: B+TREE – INSERT EXAMPLE (3)

	B+Tree Delete
	Slide 29: B+Tree – DELETE
	Slide 30: B+Tree – DELETE Example (1)
	Slide 31: B+Tree – DELETE Example (1)
	Slide 32: B+Tree – DELETE Example (1)
	Slide 33: B+Tree – DELETE Example (2)
	Slide 34: B+Tree – DELETE Example (2)
	Slide 35: B+Tree – DELETE Example (3)
	Slide 36: B+Tree – DELETE Example (3)
	Slide 37: B+Tree – DELETE Example (3)

	B+Tree Additional Info
	Slide 38: Composite Index
	Slide 40: Selection Conditions
	Slide 41: B+Tree – Duplicate Keys
	Slide 42: B+Tree – Append Record ID
	Slide 43: B+Tree – Overflow Leaf Nodes

	Use in a DBMS
	Slide 46: Clustered Indexes
	Slide 47: Index Scan Page Sorting
	Slide 48: Clustered Indexes

	Design Choices
	Slide 49: B+Tree Design Choices
	Slide 50: Node Size
	Slide 51: Merge Threshold
	Slide 52: Variable-length Keys
	Slide 53: Intra-Node Search

	Optimizations
	Slide 54: Optimizations
	Slide 55: Prefix Compression
	Slide 57: Deduplication
	Slide 58: Suffix Truncation
	Slide 59: Pointer Swizzling
	Slide 60: Bulk Insert

	B-Epsilon Trees
	Slide 61: Observation
	Slide 62: Write-Optimized B+Tree (Bε-Tree)

	Conclusion
	Slide 68: Conclusion
	Slide 69: Next Week

