COMP 421: Files & Databases

Lecture 7: Indexes, B+ Trees
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Announcements

Project #1 is due Sept 29" @ 11:59pm

Project #2 will be released Sept 29t

Mid-term Exam on Oct 15"

— In-class in this room.
— Get accommodations in now if you have not



Last Class 3

OLAP workloads demand specialized storage
solutions

For OLTP, mostly targeted lookups, updates,
deletes, inserts

How do we find the data we need?

* Which record IDs to request from storage
manager?
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Disk-oriented DBMS
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Moving Up The Stack... 5

Disk manager and Buffer Pool Query Planning

Manager operate on low-level

constructs: page #, record ID Operator Execution
Access Methods

Which pages to get? This comes
from higher layers! ‘ Buffer Pool Manager |

Disk Manager
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Searching a Heap File

SELECT * FROM useracct
WHERE userName = ?
AND userPass = ? »
Index
NSM Disk Page

header | userID JuserNamefuserPass|hostname| lastlLogin |

header | userID JuserNamefuserPass|hostname| lastlLogin

header | userID JuserNamefuserPassfhostname| lastlLogin

header - - - - =

Disk
fl| UNC
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Indexes vs. Filters

An index data structure over a subset of a table's
attributes that are organized and/or sorted to
provide the location of specific tuples using those

attributes.
— Example: B+Tree

A filter is a data structure that answers set
membership queries; it tells you whether a record

(likely) exists for a key but not where it is located.
— Example: Bloom Filter



Today's Agenda 8

B+Tree Overview
Design Choices
Optimizations
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might be labeled with the employees’ last
names. A sequential request requires the
searcher to examine the entire file, one
folder at a time. On the other hand, a
random request implies that the searcher,
guided by the. labels on the drawers and
folders, need only extract one folder.

Associated with a large, randomly ac-
cessed file in a computer system is an index
which, like the labels on the drawers and
folders of the file cabinet, speeds retrieval
by directing the searcher to the small part
of the file containing the desired item. Fig-
ure 1 depicts a file and its index. An index
may be physically integrated with the file,
like the labels on employee folders, or phys-
ically separate, like the labels on the draw-
ers. Usually the index itself is a file, If the
index file is large, another index may be
built on top of it to speed retrieval further,
and so on. The resulting hierarchy is similar
to the employee file, where the topmost
index consists of labels on drawers, and the
next level of index consists of labels on
folders.

Natural hierarchies, like the one formed
by considering last names as index entries,
do not always produce the best perform-
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https://dl.acm.org/citation.cfm?id=319663
https://dl.acm.org/doi/10.1145/1734663.1734671
https://dl.acm.org/citation.cfm?doid=356770.356776
https://github.com/postgres/postgres/blob/master/src/backend/access/nbtree/README

B+Tree

A B+Tree is a self-balancing, ordered m-way tree
for searches, sequential access, insertions, and

deletions in O(log,, n) where m is the tree fanout.
— It is perfectly balanced (i.e., every leaf node is at the
same depth in the tree)
— Every node other than the root is at least half-full
m/2-1 < #keys < m-1
— Every inner node with k keys has k+1 non-null children.
— Optimized for reading/writing large data blocks.

Some real-world implementations relax these
properties, but we will ignore that for now...



B+Tree Example

<node*> | <key> | <node*>|<key>|<node*>

20 Root Node

‘M . =20
Sibling Pointers X Inner / Non-Leaf

10 35
Nodes

<10 =10 <35 \\§?5

6 | —1el] [——l20]l31[.—138][44]] Leaf Nodes

A




B+Tree Example

20

10 < 1135

sl =Tiell —T2e[[31—]38][44

Index Key(s) Low—=>Hiqgh

"M words begin here"



Nodes

Every B+Tree node is comprised of an array of

key/value pairs.
— The keys are derived from the index's target attribute(s).

— The associated data will differ based on whether the
node is classified as an inner node or a leaf node.

The arrays are (usually) kept in sorted key order.

Store all NULL keys at either first or last leaf nodes.

EN
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B+tree Leaf Nodes

B+Tree Leaf Node
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Leaf Node Values

Microsoft”

Approach #1: Record IDs @ PostgresQl #SQL Server
— A pointer to the location of the tuple to ORACLE
which the index entry corresponds.
— Most common implementation.
Approach #2: Tuple Data icrosoft
— Index-Organized Storage ﬂQLim ZSQLServer
— Primary Key Index: Leaf nodes store the |
contents of the tuple. D\MysoL. ORACLE

— Secondary Indexes: Leaf nodes store
tuples' primary key as their values.

m | UNC
” | DEPARTMENT OF
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B-Tree Vs. B+Tree

The original B-Tree from 1971 stored keys and
values in all nodes in the tree.

— More space-efficient, since each key only appears once
in the tree.

A B+Tree only stores values in leaf nodes. Inner
nodes only guide the search process.



B+Tree — INSERT

Find correct leaf node L.
Insert data entry into L in sorted order.
If L has enough space, done!

Otherwise, split L keys into L and a new node L,
— Redistribute entries evenly, copy up middle key.
— Insert index entry pointing to L, into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

ﬁ UI\JM(;T o Source: Chris Re
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https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+Tree — INSERT Example (1)

Insert 6

12
(]2)
<12 o \
91[10
Node is full! R
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4|12
/—y /[4’12)\

" "
1113 5| 6 [ 9|10 12|]13
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B+TREE — INSERT EXAMPLE (1)

Insert 6

4119 (12
113 5(| 6 9 ([10 121113
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B+TREE — INSERT EXAMPLE (1)

Insert 6
Insert 8

1113 51168 91|10 12](13
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B+TREE — INSERT EXAMPLE (2)

Insert 17

Note: New Example/Tree.
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B+TREE — INSERT EXAMPLE (3)

Insert 16

113 5|7 9111 13 1415|17 20(|121|(23

Splsptive modeé node
Whpyetbieernizld/key
‘Hmylongs”.

Push the key up.
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B+TREE — INSERT EXAMPLE (3)

Insert 16
5 13([19
1|3 7 9|11 13)[14{[15{[17 | |[20][21(|23
New Node!
Shuffle keys from the
node that triggered the

| UNC
l_ﬁ DEPARTMENT OF
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B+TREE — INSERT EXAMPLE (3)

Want to create a key, pointer
Insert 16 pair like this. But cannot insert it
in the root node, which is full.

S|[9][13)]19 16' Split the root. Grow the tree!
1|3 5|7 9 (|11 13([14)[15(| || [|16][17 | |[20][21(|23
But this is an “orphan”

node! No parent node
points to it.

=)
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B+TREE — INSERT EXAMPLE (3)

Insert 16

511911319 16' Split the root. Grow the tree!

— /// —

1|3 5|7 9 (|11 13([14)[15(| || [|16][17 | |[20][21(|23
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B+TREE — INSERT EXAMPLE (3)

13

Insert 16

| : Next, need to split the “old” root, then
S|{9|J16]1 point to the split nodes from the new root.

1|3 5|7 9 (|11 13([14)[15(| ||||16][17 20|[21]|23

| UNC
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B+TREE — INSERT EXAMPLE (3)

13

Insert 16 <13 __A 213

\
5([ 9 16][19)
/ \[5,9) [9,13) [13,16) Mw

113 5|7 9111 13]|114/[15 16(|17 2@| 21{|23

COMPUTER SCIENCE



B+Tree — DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!

If L has only m/2-1 entries,

— Try to re-distribute, borrowing from sibling (adjacent
node with same parent as L).

— |f re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to
L or sibling) from parent of L.

-Iy I?El"-’\ll"l']ﬂE]\'T‘()F source- Chrls Re
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https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+Tree — DELETE Example (1)

Delete 6

COMPUTER SCIENCE



B+Tree — DELETE Example (1)

Delete 6

1| 3 MsTT 1T TN [er2][14

Borrow from a “rich” sibling
node.

Could borrow from either
sibling.
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B+Tree — DELETE Example (1)

Delete 6

1 (] 3 519 121( 14

Need to update parent node!
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B+Tree — DELETE Example (2)

Delete 15 13
5(| 9 17/|21
/ \ K’ g ~~\\ \
1|3 5|7 9 (|11 13 17)[19]|20]| || ||21/|23]
Bon'from a “rich” sibling

node.

Note: New Example/Tree.
—_N
@ Hﬁg}' OF



B+Tree — DELETE Example (2)

Delete 15 13
/—/ \
—
5|9 19[21
1|3 5|7 9 (|11 13)[17 19]|20] 21/|23

Need to update parent node!
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B+Tree — DELETE Example (3)

13
Delete 19 /_/ N—_
5(/9 19
1|3 5|7 9([11 1317 20| [I2123 |
rfilled!
No “rich” sibling nodes to
borrow.

Merge with a sibling



B+Tree — DELETE Example (3)

13

Delete 19 /_/ N
} This node is
5119 » « [19 I under-filled!

113 5117 9111 13117 20(|121|(23

| UNC
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B+Tree — DELETE Example (3)

Delete 15
Delete 19
The tree has shrunk in height.
5[ 9|[13[|19]
_——
11|13 5|7 9|11 13|17 20(|21(|23
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Composite Index

A composite index is when the key is comprised

of two or more attributes.
— Example: Index on <a,b,c>

(Sort Order

CREATE INDEX my_idx ON xxx (a,

DESC, || NULLS FIRST);

COMPUTER SCIENCE

\Null Handling

DBMS can use B+Tree index if the query provides

a “prefix” of composite key.

— Supported: (a=1 AND b=2 AND c=3)

— Supported: (a=1 AND b=2)

— Rarely Supported: (b=2), (c=3)




Selection Conditions

Find Key=(1,2)
Find Key=(1,*) 1< 1

i _ dEB< %,3
Find Key=(*,1) | g P
1,1|[1,2 1,3(]2,1 2,2((2,3 3,3([3,4 [4,1
1t % oo B
(1,1) (1,1) Z (4,1)

2,1



COMPUTER SCIENCE

B+Tree — Duplicate Keys

Approach #1: Append Record ID

— Add the tuple's unique Record ID as part of the key to
ensure that all keys are unique.

— The DBMS can still use partial keys to find tuples.

Approach #2: Overflow Leaf Nodes

— Allow leaf nodes to spill into overflow nodes that contain
the duplicate keys.

— This is more complex to maintain and modify.



B+Tree — Append Record ID

Insert €6, (Page,Slot)>

5[ 7] 9
1] 3 —1| 6| 6 17| 8 Bl
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B+Tree — Overflow Leaf Nodes

Insert 6
Insert 7 5 (| g
Insert 6 ‘/<5/<7 %
11| 3 Al sl 7]l 8| —1| 9|13
6| 7] 6
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Clustered Indexes

The table is stored in the sort order specified by
the primary key.
— Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.

— |If a table does not contain a primary key, the DBMS wiill
automatically make a hidden primary key.

Other DBMSs cannot use them at all.

COMPUTER SCIENCE



Index Scan Page Sorting

Retrieving tuples in the order they
appear in a is generally inefficient
due to redundant reads.

Scan Direction

A better approach is to find all the 101 102 103 104
tuples that the query needs and

. [ Page 102 [ Page 101

then sort them based on their page [ Page 103 Page 101

] Page 104 1 Page 102

ID. Page 104 Page 102

. 1 Page 102 Page 102

The DBMS retrieves each page once. [ Page 103 » Page 102

[ Page 102 [] Page 103

Page 102 Page 103

1 Page 101 Page 103

1 Page 103 [ Page 104

1 Page 104 Page 104

m UNC [ Page 103 Page 104



Clustered Indexes

An extreme solution is "index
organized storage"

Scan Direction

-Store pages in sorted order also

Z AN
£ 441NN

Traverse to the left-most leaf page 101 || 102 || 103 || 104
and then retrieve tuples from all leaf Table Pages

pages.

This will always be better than
sorting data for each query.

COMPUTER SCIENCE



B+Tree Design C- -~~~

Foundations and Trends® in
Databases

13:3

Node Size
Merge Threshold
Variable-Length Keys
Intra-Node Search

COMPUTER SCIENCE



https://dl.acm.org/citation.cfm?id=2185842
https://www.nowpublishers.com/article/Details/DBS-070

Node Size

The slower the storage device, the larger the

optimal node size for a B+Tree.
— HDD: ~1MB

— SSD: ~10KB

— In-Memory: ~512B

Optimal sizes can vary depending on the workload
— Leaf Node Scans vs. Root-to-Leaf Traversals

COMPUTER SCIENCE



Merge Threshold

Some DBMSs do not always merge nodes when
they are half full.

— Average occupancy rate for B+Tree nodes is 69%.

Delaying a merge operation may reduce the
amount of reorganization.

It may also be better to let smaller nodes exist
and then periodically rebuild entire tree.

This is why PostgreSQL calls their B+Tree a "non-
balanced" B+Tree (nbtree).


https://github.com/postgres/postgres/tree/master/src/backend/access/nbtree

Variable-length Keys

Approach #1: Pointers
— Store the keys as pointers to the tuple’s attribute.
— Also called T-Trees (in-memory DBMSs)

Approach #2: Variable-Length Nodes
— The size of each node in the index can vary.
— Requires careful memory management.

Approach #3: Padding
— Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
— Embed an array of pointers that map to the key + value
list within the node.


https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree
https://en.wikipedia.org/wiki/T-tree

Intra-Node Search

Approach #1: Linear /@ ? _%F!&J( 1 5@\ ?\@

— Scan node keys from beginning to end. Al s Tell7 I s s 10

— Use SIMD to vectorize comparisons. t \ \ I [

Approach #2: Binary 3| s ﬁ;Ln ey=8

— Jump to middle key, pivot left/right alls1lell71ll sllgllie
depending on comparison. ===

_mm_cmpeq_epi32_mask(a, b)

Approach #3: Interpolation .
— Approximate location of desired key Offselt if8ck KEA(18-4)=4

based on known distribution of keys. 415|678 9][10

*
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https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32&ig_expand=892
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Optimizations

Prefix Compression
Deduplication
Suffix Truncation
Pointer Swizzling
Bulk Insert
Buffered Updates
Many more...



Prefix Compression

Sorted keys in the same leaf node
are likely to have the same prefix.

robbed || robbing|| robot

Instead of storing the entire key

each time, extract common prefix ’,
and store only unique suffix for each

key. Prefix: rob

— Many variations. bed |[bing|| ot




Deduplication

Non-unique indexes can end up
storing multiple copies of the same

key in leaf nodes. KV LKV, K Vs | K, |V,
The leaf node can store the key once "

and then maintain a "posting list" of

tuples with that key Ko [ Vo [ Vo | Vs | Ky |V,




Suffix Truncation

The keys in the inner nodes are only

used to "direct traffic".
— We don't need the entire key.

Store a minimum prefix that is
needed to correctly route probes
into the index.

COMPUTER SCIENCE
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Pointer Swizzling

Nodes use page ids to reference Find(3)
other nodes in the index. The DBMS [ 6]l 9
must get the memory location from S RepgeH2
the page table during traversal. “Ripgehd
If a page is pinned in the buffer pool, nll-l‘lnll-l
then we can store raw pointers "1 Page #2 » <Page>
instead of page ids. This avoids i Page #3 > <Page*>
address lookups from the page ) | . |
° Header| Heade. Header
table. Q. 1 9 3
&
5




Bulk Insert

The fastest way to build a new
B+Tree for an existing table is to first
sort the keys and then build the
index from the bottom up.

Keys:3,7,9,13,6,1
Sorted Keys: 1,3,6,7,9, 13

)
COMPUTER SCIENCE




Observation

Modifying a B+tree is expensive when the DBMS

has to split/merge nodes.
— Worst case is when DBMS reorganizes the entire tree.

— The worker that causes a split/merge is responsible for
doing the work.

What if there was a way to delay updates and
then apply multiple changes together in a batch?

ENT
COMPUTER SCIENCE



Write-Optimized B+Tree (Be-Tree)

Instead of immediately applying
updates, store changes to key/value
entries in log buffers at inner nodes.

— aka Fractal Trees / Be-trees.

Updates cascade down to
lower nodes incrementally
when buffers get full.

Mod

Enedrt040
Delete 10

=



https://en.wikipedia.org/wiki/Fractal_tree_index

Conclusion

The venerable B+Tree is (almost) always a good
choice for your DBMS.

COMPUTER SCIENCE



Next Week

Zhongrui takes over for 2 classes

More algorithms and data structures used inside
the DBMS

Hash Tables
Sorting (external sort)
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