
COMP 421: Files & Databases

Lecture 8: Hash Tables

1

Announcements

Project #1 is due Sept 29th @ 11:59pm

Project #2 released later today

Midterm Exam:

Because of the missed class, the midterm will be
Monday, 10/20. This should resolve a couple of exam
conflicts for 1 or 2 students.

The midterm will include material up to and including
"joins (10/13)"

2

Course Outline

We are now going to talk about how
to support the DBMS's execution
engine to read/write data from
pages.

Two types of data structures:
→ Hash Tables (Unordered)
→ Trees (Ordered)

Query Planning

Operator Execution

Access Methods

Buffer Pool Manager

Disk Manager

3

Today's Agenda

Background

Hash Functions

Static Hashing Schemes

Dynamic Hashing Schemes

4

Data Structures

Internal Meta-data

Core Data Storage

Temporary Data Structures

Table Indexes

5

Design Decisions

Data Organization
→ How we layout data structure in memory/pages and

what information to store to support efficient access.

Concurrency
→ How to enable multiple threads to access the data

structure at the same time without causing problems.

6

Hash Tables

A hash table implements an unordered
associative array that maps keys to values.

It uses a hash function to compute an offset into
this array for a given key, from which the desired
value can be found.

Space Complexity: O(n)
Time Complexity:
→ Average: O(1)
→ Worst: O(n)

Databases care about constants!

7

Static Hash Table

Allocate a giant array that has one
slot for every element you need to
store.

To find an entry, mod the key by the
number of elements to find the
offset in the array. ⋮

0

1

2

n

A

B

Z

Ø A | value

B | value

Z | value

8

hash(key) % N

Unrealistic Assumptions

Assumption #1: Number of
elements is known ahead of time
and fixed.

Assumption #2: Each key is unique.

Assumption #3: Perfect hash
function guarantees no collisions.
→ If key1≠key2, then

hash(key1)≠hash(key2)

hash(key) % N

⋮

0

1

2

n

A | value

B | value

Z | value

9

Hash Table

Design Decision #1: Hash Function
→ How to map a large key space into a smaller domain.
→ Trade-off between being fast vs. collision rate.

Design Decision #2: Hashing Scheme
→ How to handle key collisions after hashing.
→ Trade-off between allocating a large hash table vs.

additional instructions to get/put keys.

10

Hash Functions

For any input key, return an integer
representation of that key.
→ Converts arbitrary byte array into a fixed-length code.

We want something that is fast and has a low
collision rate.

We do not want to use a cryptographic hash
function for DBMS hash tables (e.g., SHA-2).

11

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2

Hash Functions

CRC-64 (1975)
→ Used in networking for error detection.

MurmurHash (2008)
→ Designed as a fast, general-purpose hash function.

Google CityHash (2011)
→ Designed to be faster for short keys (<64 bytes).

Facebook XXHash (2012)
→ From the creator of zstd compression.

Google FarmHash (2014)
→ Newer version of CityHash with better collision rates.

← State-of-the-art

12

https://create.stephan-brumme.com/crc32/
https://create.stephan-brumme.com/crc32/
https://create.stephan-brumme.com/crc32/
https://github.com/aappleby/smhasher
https://github.com/google/cityhash
https://github.com/google/cityhash
http://cyan4973.github.io/xxHash/
https://github.com/google/farmhash
https://github.com/google/farmhash
https://rurban.github.io/smhasher/
https://github.com/rurban/smhasher/blob/master/README.md#summary

Static Hashing Schemes

Approach #1: Linear Probe Hashing

Approach #2: Cuckoo Hashing

There are several other schemes covered in the
Advanced DB course:
→ Robin Hood Hashing
→ Hopscotch Hashing
→ Swiss Tables

13

←Open Addressing

https://15721.courses.cs.cmu.edu/

Linear Probe Hashing

Single giant table of fixed-length slots.

Resolve collisions by linearly searching for the
next free slot in the table.
→ To determine whether an element is present, hash to a

location in the table and scan for it.
→ Store keys in table to know when to stop scanning.
→ Insertions and deletions are generalizations of lookups.

The table's load factor determines when it is
becoming too full and should be resized.
→ Allocate a new table twice as large and rehash entries.

14

<key>|<value>

Linear Probe Hashing

A
B
C
D

hash(key) % N

| valueA

| valueC

| valueDE

| valueEF

| valueF

15

| valueB

Hash Table – Key/Value Entries

Fixed-length Key/Values:
→ Store inline within the hash table pages.
→ Optional: Store the key's hash with the

key for faster comparisons.

Variable-length Key/Values:
→ Insert key/value data in separate a

private temporary table.
→ Store the hash as the key and use the

record id pointing to its corresponding
entry in the temporary table as the
value.

16

key valuehash

key valuehash

key valuehash

⋮

RecordIdhash

RecordIdhash

RecordIdhash

⋮
Temp Table Page

key | value

key | value

key | value

Linear Probe Hashing – Deletes

Approach #1: Movement
→ Rehash keys until you find

the first empty slot.
→ Expensive! May need to

reorganize the entire table.
→ No DBMS does this.

A
B
C
D

hash(key) % N

| valueA

| valueB

| valueC

E
F

| valueD

| valueE

| valueF

Delete
Get

17

Linear Probe Hashing – Deletes

Approach #2: Tombstone
→ Maintain separate bit map

to indicate that the entry in
the slot is logically deleted.

→ Reuse the slot for new keys.
→ May need periodic garbage

collection.

A
B
C
D

hash(key) % N

| valueA

| valueB

| valueC

E
F

| valueD

| valueE

| valueF

Delete
Get

G

| valueG

Put

18

Hash Table – Non-unique Keys

Choice #1: Separate Linked List
→ Store values in separate storage area for

each key.
→ Value lists can overflow to multiple

pages if the number of duplicates is
large.

Choice #2: Redundant Keys
→ Store duplicate keys entries together in

the hash table.
→ This is what most systems do.

XYZ

ABC

value1
value2
value3

Value Lists

value1
value2

XYZ | value2

ABC | value1

XYZ | value3

XYZ | value1

ABC | value2

19

Optimizations

Specialized hash table implementations based on
key type(s) and sizes.
→ Example: Maintain multiple hash tables for different

string sizes for a set of keys.

Store metadata separate in a separate array.
→ Packed bitmap tracks whether a slot is

empty/tombstone.

Use table + slot versioning metadata to quickly
invalidate all entries in the hash table.
→ Example: If table version does not match slot version,

then treat the slot as empty.

20

Source: Maksim Kita

https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions
https://clickhouse.com/blog/hash-tables-in-clickhouse-and-zero-cost-abstractions

Cuckoo Hashing

Use multiple hash functions to find multiple
locations in the hash table to insert records.
→ On insert, check multiple locations and pick the one that

is empty.
→ If no location is available, evict the element from one of

them and then re-hash it find a new location.

Look-ups and deletions are always O(1) because
only one location per hash table is checked.

Best open-source implementation is from CMU.

21

https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo
https://github.com/efficient/libcuckoo

Cuckoo Hashing

| valueA

| valueB | valueC

| valueB

| valueA

Put A: hash1(A)

hash2(A)

Put B: hash1(B)

hash2(B)

Put C: hash1(C)

hash2(C)

hash1(B)

hash2(A)

Get B: hash1(B)

hash2(B)

22

Observation

The previous hash tables require the DBMS to
know the number of elements it wants to store.
→ Otherwise, it must rebuild the table if it needs to

grow/shrink in size.

Dynamic hash tables incrementally resize
themselves as needed.
→ Chained Hashing
→ Extendible Hashing
→ Linear Hashing

23

Chained Hashing

Maintain a linked list of buckets for each slot in
the hash table.

Resolve collisions by placing all elements with the
same hash key into the same bucket.
→ To determine whether an element is present, hash to its

bucket and scan for it.
→ Insertions and deletions are generalizations of lookups.

24

Chained Hashing

Put A
Put B
Put C
Put D

hash(key) % N

Put E
Put F

| valueA

| valueB

Buckets
| valueC

| valueD

| valueE

| valueF

Bucket
Pointers

25

Filter

Filter

FilterGet G

Does key 'G' exist?

Extendible Hashing

Chained-hashing approach that splits buckets
incrementally instead of letting the linked list
grow forever.

Multiple slot locations can point to the same
bucket chain.

Reshuffle bucket entries on split and increase the
number of bits to examine.
→ Data movement is localized to just the split chain.

26

Extendible Hashing

global 2

01

00

10

11

local

local

local

00010…

01110…
1

10101…

10011…
2

11010… 2

hash(A) = 01110…
Get A

hash(B) = 10111…
Put B

hash(C) = 10100…
Put C

010

000

100

110

011

001

101

111

3

10111…
10011…

3

10101…

10111…

3
10100…

27

H
a

sh
 B

it
s

Max number of bits to examine in hashes

Overflow!

Linear Hashing

The hash table maintains a pointer that tracks the
next bucket to split.
→ When any bucket overflows, split the bucket at the

pointer location.

Use multiple hashes to find the right bucket for a
given key.

Can use different overflow criterion:
→ Space Utilization
→ Average Length of Overflow Chains

28

Linear Hashing

1

0

2

3

8 hash1(6) = 6 % 4 = 2
Get 6

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

hash1(17) = 17 % 4 = 1
Put 17

hash1(20) = 20 % 4 = 0
Get 20

17

4

hash2(key) = key % 2n

20

hash2(20) = 20 % 8 = 4

Overflow!

hash1(9) = 9 % 4 = 1
Get 9

29

hash2(8) = 8 % 8 = 0
hash2(20) = 20 % 8 = 4

20

Bucket
Pointers

Linear Hashing – Resizing

Splitting buckets based on the split pointer will
eventually get to all overflowed buckets.
→ When the pointer reaches the last slot, remove the first

hash function and move pointer back to beginning.

If the "highest" bucket below the split pointer is
empty, the hash table could remove it and move
the splinter pointer in reverse direction.

30

Linear Hashing – Deletes

1

0

2

3

8

5

9

13

6

7

11

Split
Pointer

hash1(key) = key % n

17

4

20hash2(key) = key % 2n

hash1(20) = 20 % 4 = 0
Delete 20

hash2(20) = 20 % 8 = 4

hash1(21) = 21 % 4 = 1
Put 21

Overflow!

21

31

Conclusion

Fast data structures that support O(1) look-ups
that are used all throughout DBMS internals.
→ Trade-off between speed and flexibility.

Hash tables are usually not what you want to use
for a table index…

32

CREATE INDEX ON xxx USING BTREE (val);

CREATE INDEX ON xxx (val);

CREATE INDEX ON xxx USING HASH (val);

Next Class

Sorting…

33

	Introduction
	Slide 1
	Slide 2: Announcements
	Slide 3: Course Outline
	Slide 4: Today's Agenda

	Background
	Slide 5: Data Structures
	Slide 6: Design Decisions
	Slide 7: Hash Tables
	Slide 8: Static Hash Table
	Slide 9: Unrealistic Assumptions
	Slide 10: Hash Table

	Hash Functions
	Slide 11: Hash Functions
	Slide 12: Hash Functions
	Slide 13: Static Hashing Schemes

	Linear Probe Hashing
	Slide 14: Linear Probe Hashing
	Slide 15: Linear Probe Hashing
	Slide 16: Hash Table – Key/Value Entries
	Slide 17: Linear Probe Hashing – Deletes
	Slide 18: Linear Probe Hashing – Deletes
	Slide 19: Hash Table – Non-unique Keys
	Slide 20: Optimizations

	Cuckoo Hashing
	Slide 21: Cuckoo Hashing
	Slide 22: Cuckoo Hashing

	Chained Hash Table
	Slide 23: Observation
	Slide 24: Chained Hashing
	Slide 25: Chained Hashing

	Extendible Hashing
	Slide 26: Extendible Hashing
	Slide 27: Extendible Hashing

	Linear Hashing
	Slide 28: Linear Hashing
	Slide 29: Linear Hashing
	Slide 30: Linear Hashing – Resizing
	Slide 31: Linear Hashing – Deletes

	Conclusion
	Slide 32: Conclusion
	Slide 33: Next Class

