
Simple Policies for Multiresource Job Scheduling
Zhongrui Chen

University of North Carolina at
Chapel Hill

Isaac Grosof
University of Illinois,
Urbana-Champaign

Benjamin Berg
∗

University of North Carolina at
Chapel Hill

ABSTRACT
Data center workloads are composed of multiresource jobs
requiring a variety of computational resources including CPU
cores, memory, disk space, and hardware accelerators. Mod-
ern servers can run multiple jobs in parallel, but a set of jobs
can only run in parallel if the server has sufficient resources
to satisfy the demands of each job. It is generally hard to
find sets of jobs that perfectly utilize all server resources, and
choosing the wrong set of jobs can lead to low resource uti-
lization. This raises the question of how to allocate resources
across a stream of arriving multiresource jobs to minimize
the mean response time across jobs — the mean time from
when a job arrives to the system until it is complete.

Current policies for scheduling multiresource jobs are com-
plex to analyze and hard to implement. We propose a class
of simple policies, called Markovian Service Rate (MSR)
policies. We show that the class of MSR policies is throughput-
optimal, in that if a policy exists that can stabilize the sys-
tem, then an MSR policy exists that stabilizes the system.
We derive bounds on the mean response time under an MSR
policy, and show how our bounds can be used to choose an
MSR policy that minimizes mean response time.

1. INTRODUCTION
Modern data centers serve multiresource jobs that require

a variety of computational resources. Different jobs request
different amounts of each resource. For example, CPU-
intensive jobs may request little memory, and memory-intensive
jobs may require only a few CPU cores. A data center server
can serve multiple jobs in parallel, but has a limited amount
of each resource. Hence, a set of jobs can only run in parallel
if the server can satisfy the resource demands of each job.
This raises the question of what set of jobs to run on the
server at every moment in time. Specifically, we consider
scheduling a stream of multiresource jobs to minimize the
mean response time across jobs — the average time from
when a job arrives to the system until it is completed.

Unfortunately, due to bin-packing effects, it is generally
impossible to guarantee that all server resources will be uti-
lized. For example, consider a server with 20 CPUs and
20 GB of memory that processes some jobs that require 10
CPUs and 4 GB of memory, and others that require 4 CPUs
and 10 GB of memory. No combination of these jobs will
simultaneously utilize all 20 cores and all 20 GB of mem-
ory. Given that some resources must go unused, it is unclear
which imperfect allocations will minimize the mean response

∗Suppported by National Science Foundation grants NSF-
CCF-2403195 and NSF-IIS-2322974

MAMA 2024 Venice, Italy
Copyright is held by author/owner(s).

time. Our goal is to devise a scheduling policy that chooses
which jobs to run in parallel at every moment in time.
Prior Work. The well-known results of [6] analyze a policy
called Max-Weight that repeatedly solves a weighted knap-
sack problem to decide what set of multiresource jobs to
serve in parallel. Max-Weight is shown to be throughput-
optimal : if a scheduling policy exists that provides finite
mean response time, Max-Weight provides finite mean re-
sponse time. Furthermore, [1] shows that Max-Weight is
asymptotically optimal in a conventional heavy-traffic limit.
Unfortunately, Max-Weight involves repeatedly solving a
computationally hard problem in order to find good allo-
cation decisions, limiting the practicality of the policy.

While less complex policies for scheduling multiresource
jobs have been analyzed, their lower complexity comes with
a cost. Specifically, the First-Come-First-Served (FCFS)
policy was recently analyzed in [4]. While this work derives
bounds on the mean response time of FCFS, FCFS is far
from optimal and can cause instability in cases where Max-
Weight performs well. An easy-to-implement, throughput-
optimal policy is presented in [3, 7], but there is no known
analysis of the mean response time for this policy.
Our Results. We analyze the simple class of Markovian
Service Rate (MSR) scheduling policies. This class of poli-
cies is throughput-optimal: if it is possible to stabilize the
system, there exists an MSR policy that stabilizes the sys-
tem. We bound the mean response time under an MSR
policy, and use our bounds to pick the MSR policy that
minimizes mean response time. Our results fill a gap in the
literature on multiresource jobs: MSR policies are simpler to
implement and analyze than Max-Weight, but unlike FCFS,
the class of MSR policies is throughput-optimal.

2. MULTIRESOURCE JOB MODEL
We consider a server with R different types of computa-

tional resources. Let C = (C1, C2, · · · , CR) ∈ RR
+ denote

the resource capacity of the server, where Cj is the amount
of the j-th resource the server has. A multiresource job can
be represented by a resource demand vector, the amount of
each resource needed to run, and a service requirement, the
amount of time the job must run on the server before com-
pletion. Multiple multiresource jobs can run on the server
in parallel as long as the cumulative resource demand of the
jobs doesn’t exceed the server capacity. We call this restric-
tion the resource constraint. We assume that there are K
types of jobs, where type-i jobs share a resource demand vec-
tor Ji = (J i

1, J
i
2, · · · , J i

R) ∈ RR
+ and the service requirements

of type-i jobs are sampled i.i.d. from a common distribution
Si ∼ exp(µi). We assume that the scheduler knows the re-
source demand and service requirement distribution of each
job, but the exact service requirement of each job is un-
known. While our analysis can be adapted to handle phase-

type service requirement distributions, we limit ourselves to
exponential distributions here due to space constraints.

We define a possible schedule as a set of jobs that can
run in parallel without violating the resource constraints of
the server. We describe a possible schedule using a vector
u = (u1, u2, · · · , uK) ∈ ZK

+ , where ui denotes the number of
type-i jobs being served. The resource constraint in this case
translates to

∑K
i=1 uiJ

i ≤ C. We call the set of all possible
schedules the schedulable set, S. A scheduling policy in the
multiresource job model, u(t), chooses a schedule from S to
use at time t. Note that u(t) need not depend on time and
can depend on external states such as jobs in the system.

We assume that type-i jobs arrive to the system according
to a Poisson process with rate λi. Let

λ = (λ1, λ2, · · · , λK) ∈ RK
+

denote the vector of arrival rates. Similarly, we let

µ = (µ1, µ2, · · · , µK) ∈ RK
+

denote the vector of service rates. We describe the state of
the system as the vector

Q(t) = (Q1(t), Q2(t), · · · , QK(t)),

where Qi(t) is the number of type-i jobs present at time t.
Note that {Q(t), t ≥ 0} is a Continuous-Time-Markov-

Chain (CTMC). We are interested in analyzing the steady-
state behavior of the system as t → ∞. Specifically, let
Q ∼ limt→∞ Q(t). We will analyze the mean response time
across type-i jobs, E[Ti]. To bound E[Ti], we will bound
E[Qi] and apply Little’s Law. Let T = (T1, T2, · · · , TK) be
a vector of random variables that denotes the response times
of type-i jobs. We have E[T] = E[Q]/λ. We say the system
is stable if the CTMC {Q(t)} is positive recurrent.

3. MARKOVIAN SERVICE RATE POLICIES
Max-Weight’s complexity stems from repeatedly choosing

schedules from the entire set of possible schedules, S. Ad-
ditionally, the rule for selecting a schedule is fairly opaque:
each choice requires solving a hard optimization problem.
This complexity obscures the intuitive property that leads
Max-Weight to stabilize the system. Namely, Max-Weight
guarantees that the average completion rate of type-i jobs
is greater than the arrival rate of type-i jobs. We will de-
rive policies that achieve this property via a one-time, offline
optimization step rather than repeated online optimization.

We define a class of scheduling policies called Markovian
Service Rate (MSR) policies. An MSR policy, π, chooses
a set Sπ ⊆ S of possible schedules called the candidate
set. The policy then uses a CTMC, {π(t), t ≥ 0}, to mod-
ulate among the schedules in the candidate set. We call
{π(t)} the modulating process. Formally, let |Sπ| = Lπ,
Sπ = {u1,u2, · · · ,uLπ}, and π : R+ → {1, 2, · · · , Lπ}. The

schedule used by π at time t is defined as u(t) = uπ(t). Note

that uπ(t) ∈ Sπ ⊆ S, so that the schedule chosen at any
time t satisfies the server’s resource constraints. Note also
that π(t) is oblivious to the state of the system Q(t). Let
E[uπ] denote the time average schedule used by π.

We first prove Lemma 1, which provides a sufficient con-
dition for the stability of the system under an MSR policy.

Lemma 1. If λ < E[uπ] · µ, then the system is stable,
where · and < are element-wise.

Proof. We invoke the Foster-Lyapunov theorem [5] with
the test function ∥Q∥2 to show that the system is stable.

We now prove that the class of MSR policies is throughput-
optimal. We also show that an MSR policy requires only K
candidate schedules to stabilize the system. Hence, even if
S is large, a good MSR policy can be computed efficiently.

Theorem 1. Given a system with K job types and an
arrival vector λ, if there exists a scheduling policy that sta-
bilizes the system, there also exists an MSR policy, π, with
Lπ = K that stabilizes the system.

Proof. The system can only be stabilized if there exists
a weighted average of schedules such that the average com-
pletion rate of each job type is larger than its arrival rate [6].
Using Carathéodory’s theorem [2], we additionally see that
when the system can be stabilized, there exists a weighted
average of at most K schedules such that the average com-
pletion rate of each job type dominates its arrival rate. We
choose Sπ to be this set of K points and set the modulating
process {π(t)} such that the average completion rate of each
job type is greater than its arrival rate. Finally, Lemma 1
tells us that the system will be stable under π.

Response Time Bounds on MSR Policies. Theorem
1 tells us a stable MSR policy exists, but such policy may
not be unique. Unfortunately, Theorem 1 provides no hints
about how to choose from all stable MSR policies. Hence,
we derive bounds on the mean response time of an arbitrary
MSR policy, and show how these bounds can be used to
select an MSR policy that minimizes mean response time.

We separately analyze the number of type-i jobs in the
system for each job type i. This allows us to compute the
mean response time of type-i jobs under an MSR policy
π, E[Tπ

i]. We compare the mean number of type-i jobs in
the system under the policy π to the number of jobs in an
analogous M/M/1 Markovian Service Rate (MSR-1) sys-
tem [4]. An MSR-1 system under policy πMSR-1 consists of
a variable-speed server serving jobs that arrive according to
a Poisson process with rate λMSR-1. The server has LMSR-1

π

states corresponding to different server speeds. Specifically,
the server speed is chosen from the vector
(µMSR-1

1 , µMSR-1
2 , · · · , µMSR-1

LMSR-1
π

) according to a CTMC,

{πMSR-1(t), t ≥ 0}. Let πMSR-1 be the limiting distribu-
tion of the modulating process. We denote the time-average
server speed as µ∗. Unlike our original system, the MSR-1
system runs one job at a time and changes server speeds
rather than modulating the number of jobs in service. To
obtain response time bounds for MSR policies, we compare
our original system to an analogous MSR-1 system and then
analyze the mean response time of the MSR-1 system.

Consider any job type i ∈ [1,K]. To analyze E[Tπ
i],

we construct an analogous MSR-1 system, πMSR-1, with
LMSR-1

π = Lπ. We set µMSR-1
j to be µi · uj

i . We set the

modulating processes, {π(t)} and {πMSR-1(t)}, to be the
same. We set λMSR-1 = λi. In short, we construct an MSR-
1 system that matches the behavior of type-i jobs under
π, except the MSR-1 system runs one job at a time. Let
QMSR-1

i (t) be the number of jobs in the MSR-1 system at
time t. We compare these analogous systems in Theorem 2.

Theorem 2.

E[QMSR-1
i] ≤ E[Qi] ≤ E[QMSR-1

i] + max
j

{
uj
i

}
Proof. First, we show that QMSR-1

i (t) ≤st Qi(t) via a
coupling argument. Essentially, the service rate in the MSR-
1 system is at least that of the original system, because the

u1 u2

0.0032

0.097

(a) Modulating process

8 8.5 9 9.5 10
0

10

20

30

40
Empirical
Predicted

Arrival Rate of Type-1 Jobs

M
ea

n
R

es
po

ns
e

Ti
m

e
of

 T
yp

e-
1

Jo
bs

(b) Type-1 jobs

8 8.5 9 9.5
0

10

20

30

40
Empirical
Predicted

Arrival Rate of Type-2 Jobs

M
ea

n
R

es
po

ns
e

Ti
m

e
of

 T
yp

e-
2

Jo
bs

(c) Type-2 jobs

Figure 1: Response time bounds versus simulation for an MSR policy, π. This system serves K = 2 job types using Lπ = 2
states, u1 = (10, 10) and u2 = (19, 9), and the modulating process shown in (a). Here, µ1 = µ2 = 1.

original system may not have enough type-i jobs to run ui(t)
jobs in parallel. The MSR-1 system always serves jobs at
rate ui(t) · µi. This implies the lower bound in our claim.

We also prove the upper bound in our claim by a coupling
argument. We note that at any time t, we are in one of two
cases. First, when Qi(t) ≤ maxj

{
uj
i

}
, we trivially have

Qi(t) ≤ QMSR-1
i (t) + max

j

{
uj
i

}
.

Otherwise, during periods when Qi(t) > maxj

{
uj
i

}
, the

two systems complete jobs at the same rate. Thus, if our
claim holds at the beginning of such a period, it will hold
for the entire period. This coupling gives the desired mean
response time an upper bound.

To apply Theorem 2, we can bound the mean response time
of any MSR-1 system using the techniques described in [4] to
obtain response time bounds for any MSR policy. Corollary
1 gives an example of our response time bounds in a system
with two resource types and two job types. Here, we consider
an MSR policy that uses two schedules. Let αj,k represent
the transition rate of the modulating process from state j to
state k in both the original system and the MSR-1 system.

Corollary 1. In a system with R = 2 resources and
K = 2 job types, we consider an MSR policy, π, with Lπ = 2.
WLOG, we assume µMSR-1

1 ≤ µMSR-1
2 . In this case,

E[Tπ
i] =

1

µ∗ − λi
+

α1,2α2,1(µMSR-1
2 − µMSR-1

1)2

λi(µ∗ − λi)(α1,2 + α2,1)3
+B,

where average server speed µ∗ =
α1,2µMSR-1

2 + α2,1µMSR-1
1

α1,2 + α2,1
,

B ≥
α2,1(µMSR-1

1 − µMSR-1
2)

λi(α1,2 + α2,1)2
,

and B ≤
α1,2(µMSR-1

2 − µMSR-1
1)

λi(α1,2 + α2,1)2
+

maxj

{
uj
i

}
λi

.

Proof. This follows from Theorem 2 and the bound on
MSR-1 systems derived in [4].
Figure 1 shows these bounds compared to simulation.
The Optimized MSR Policy. Although many MSR poli-
cies can be used to stabilize a given system, our response
time bounds in Theorem 2 tell us which MSR policy one
should use to minimize mean response time. Specifically, we
can compute an Optimized MSR Policy (OMP) that min-
imizes our response time upper bound. To simplify this
discussion, we consider the concrete example of finding an
OMP in the two-state example described in Corollary 1.

First, observe that when α1,2 + α2,1 → ∞, E[Tπ
i] →

1/(µ∗ − λi). That is, our optimized policy can preempt
running jobs infinitely frequently with no overhead, it is op-
timal to let the transition rates of the modulating process
go to infinity. Then, we can pick our MSR policy by min-
imizing the lead term in our response time bound, which
corresponds to the system load in the MSR-1 system.

In practice, jobs cannot be preempted infinitely frequently.
Hence, we also consider finding an OMP subject to a pre-
emption budget, ᾱ, that limits the long-run average rate of
preemption the scheduling policy can perform. In this case,
we choose an OMP via the following minimization problem:

min
π,Sπ

∑
i

λi · (upper bound on E[Tπ
i])

s.t. α ≤ ᾱ, and E[uπ] · µ > λ.

Here, α is the average preemption rate for a given choice
of MSR policy. In general, α is straightforward to calcu-
late from stationary distribution of the modulating process,
{π(t)}. Given our two-state example, for instance, we have

α =
2α1,2α2,1

α1,2 + α2,1
.

Note that as ᾱ → 0, the (µMSR-1
2 − µMSR-1

1)2 term in our
bound blows up. Here, the OMP will choose the schedules
that minimize (µMSR-1

2 − µMSR-1
1)2.

Our response time bounds depend on three factors: (i)
the average system load, (ii) the rate at which the modu-
lating process changes schedules, and (iii) the variability in
the schedules the policy uses. If an MSR policy changes
schedules frequently, the variability factor vanishes, since
jobs roughly experience a system with a constant comple-
tion rate, the average server speed µ∗. If the policy preempts
infrequently, the variability factor will dominate. Given a
fixed preemption budget, ᾱ, the OMP must balance a trade-
off between system load and the variability of its schedules.

4. CONCLUSION
We consider the problem of scheduling multiresource jobs.

We prove response time bounds for a simple, throughput-
optimal class of scheduling policies called MSR policies. We
derive bounds on the mean response time of any MSR policy,
and show how these bounds can be used to choose the best
MSR policy for a given system.

5. REFERENCES
[1] Eryilmaz, A., and Srikant, R. Asymptotically tight

steady-state queue length bounds implied by drift
conditions. Queueing Systems 72 (2012), 311–359.

[2] Fabila-Monroy, R., and Huemer, C.
Caratheodory’s theorem in depth. Discrete &
Computational Geometry 58 (2017), 51–66.

[3] Ghaderi, J. Randomized algorithms for scheduling
vms in the cloud. In IEEE INFOCOM (2016), IEEE.

[4] Grosof, I., Hong, Y., Harchol-Balter, M., and
Scheller-Wolf, A. The RESET and MARC
techniques, with application to multiserver-job analysis.
Performance Evaluation 162 (2023), 102378.

[5] Kleinrock, L. Queueing systems, volume 2:
Computer applications, vol. 66. Wiley New York, 1976.

[6] Maguluri, S. T., Srikant, R., and Ying, L. Heavy
traffic optimal resource allocation algorithms for cloud
computing clusters. Performance Evaluation (2014).

[7] Psychas, K., and Ghaderi, J. Randomized
algorithms for scheduling multi-resource jobs in the
cloud. IEEE/ACM ToN 26, 5 (2018), 2202–2215.

